Details

Supramolecular Chemistry in Water


Supramolecular Chemistry in Water


1. Aufl.

von: Stefan Kubik

151,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 13.05.2019
ISBN/EAN: 9783527814916
Sprache: englisch
Anzahl Seiten: 592

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Provides deep insight into the concepts and recent developments in the area of supramolecular chemistry in water <br> <br> Written by experts in their respective field, this comprehensive reference covers various aspects of supramolecular chemistry in water?from fundamental aspects to applications. It provides readers with a basic introduction to the current understanding of the properties of water and how they influence molecular recognition, and examines the different receptor types available in water and the types of substrates that can be bound. It also looks at areas to where they can be applied, such as materials, optical sensing, medicinal imaging, and catalysis. <br> <br> Supramolecular Chemistry in Water offers five major sections that address important topics like water properties, molecular recognition, association and aggregation phenomena, optical detection and imaging, and supramolecular catalysis. It covers chemistry and physical chemistry of water; water-mediated molecular recognition; peptide and protein receptors; nucleotide receptors; carbohydrate receptors; and ion receptors. The book also teaches readers all about coordination compounds; self-assembled polymers and gels; foldamers; vesicles and micelles; and surface-modified nanoparticles. In addition, it provides in-depth information on indicators and optical probes, as well as probes for medical imaging. <br> <br> -Covers, in a timely manner, an emerging area in chemistry that is growing more important every day <br> -Addresses topics such as molecular recognition, aggregation, catalysis, and more <br> -Offers comprehensive coverage of everything from fundamental aspects of supramolecular chemistry in water to its applications <br> -Edited by one of the leading international scientists in the field <br> <br> Supramolecular Chemistry in Water is a one-stop-resource for all polymer chemists, catalytic chemists, biochemists, water chemists, and physical chemists involved in this growing area of research. <br>
<p>Preface xv</p> <p><b>1 Water Runs Deep 1<br /></b><i>Nicholas E. Ernst and Bruce C. Gibb</i></p> <p>1.1 The Control of Water 1</p> <p>1.2 The Shape of Water 2</p> <p>1.3 The Matrix of Life as a Solvent 4</p> <p>1.4 Solvation Thermodynamics 6</p> <p>1.5 The Three Effects 9</p> <p>1.5.1 The Hydrophobic Effect 11</p> <p>1.5.2 The Hofmeister Effect 19</p> <p>1.5.3 The Reverse Hofmeister Effect 23</p> <p>1.6 Conclusions and Future Work 24</p> <p>Acknowledgments 25</p> <p>References 25</p> <p><b>2 Water‐Compatible Host Systems 35<br /></b><i>Frank Biedermann</i></p> <p>2.1 General Overview 35</p> <p>2.2 Acyclic Systems 36</p> <p>2.2.1 Acyclic Molecular Recognition Units 36</p> <p>2.2.2 Molecular Tweezers 38</p> <p>2.2.3 Foldamers 39</p> <p>2.2.4 Compartmentalized Structures Formed by Surfactant‐Like Molecules 40</p> <p>2.3 Macrocyclic Receptors that Bind Charged Guests 42</p> <p>2.3.1 Crown Ethers, Cryptands, and Spherands 42</p> <p>2.3.2 Bambus[<i>n</i>]urils 44</p> <p>2.3.3 Calix[<i>n</i>]arenes 45</p> <p>2.3.4 Pillar[<i>n</i>]arenes 48</p> <p>2.4 Macrocyclic Receptors that (also) Bind Non‐charged Organic Guests 50</p> <p>2.4.1 Cyclodextrins 50</p> <p>2.4.2 Cucurbit[<i>n</i>]urils 54</p> <p>2.4.3 Deep Cavitands 58Contents</p> <p>2.4.4 Molecular Tubes 62</p> <p>2.5 Practitioner’s Guidelines for Choosing a Water‐Compatible Host 64</p> <p>2.5.1 Guest Binding Affinity and Selectivity 64</p> <p>2.5.2 Availability/Scalability 65</p> <p>2.5.3 Functionality 65</p> <p>2.5.4 Solubility 66</p> <p>2.5.5 Biocompatibility/Toxicity 67</p> <p>References 67</p> <p><b>3 Artificial Peptide and Protein Receptors 79<br /></b><i>Joydev Hatai and Carsten Schmuck</i></p> <p>3.1 Introduction 79</p> <p>3.2 Peptide Recognition 79</p> <p>3.2.1 Calixarenes 80</p> <p>3.2.2 Guanidiniocarbonyl Pyrroles 80</p> <p>3.2.3 Cucurbiturils 82</p> <p>3.2.4 Metal Complexes 84</p> <p>3.2.5 Phosphonates 86</p> <p>3.2.6 Thiourea‐Containing Copolymers 87</p> <p>3.3 Protein Recognition 88</p> <p>3.3.1 Molecular Tweezer: Huntingtin Protein (htt) 89</p> <p>3.3.2 Foldamer: Human Carbonic Anhydrase 89</p> <p>3.3.3 Tetravalent Peptide: β‐Tryptase 90</p> <p>3.3.4 Semisynthetic Fusicoccin Derivative: 14‐3‐3/Gab2 Protein 91</p> <p>3.3.5 Ruthenium Complex: Cytochrome C 92</p> <p>3.3.6 Nitrilotriacetic Acid–Peptide Conjugate: His‐Tag Calmodulin 93</p> <p>3.3.7 Cucurbit[7]uril: Native Insulin and Human Growth Hormone 95</p> <p>3.3.8 Phosphonated Calix[6]arene: Cytochrome C 96</p> <p>3.3.9 <i>p</i>‐Sulfonatocalixarene: Human Insulin Α 96</p> <p>3.3.10 Multivalent Calixarene: Platelet‐Derived Growth Factor 97</p> <p>3.4 Sensor Arrays for Proteins 99</p> <p>3.4.1 Tripodal Peptide‐Containing Receptors: Proteins and Glycoproteins 99</p> <p>3.4.2 Substituted Porphyrins: Proteins and Metalloproteins 100</p> <p>3.4.3 Poly(<i>p</i>‐phenyleneethynylene)s: Proteins 101</p> <p>3.4.4 Chemiluminescent Nanomaterials: Proteins and Cells 103</p> <p>3.5 Combinatorial Fluorescent Molecular Sensors for Proteins 104</p> <p>3.5.1 Probe for MMP, GST, and PDGF Protein Families 104</p> <p>3.5.2 Probe for Amyloid Beta Proteins 107</p> <p>3.6 Conclusions and Future Directions 108</p> <p>References 109</p> <p><b>4 Recognition, Transformation, Detection of Nucleotides and Aqueous Nucleotide‐Based Materials 115<br /></b><i>Isabel Pont, Cristina Galiana‐Rosello, Alberto Lopera, Jorge González‐García, and Enrique García‐España</i></p> <p>4.1 Introduction 115</p> <p>4.2 Nucleotide Structures 118</p> <p>4.3 Nucleotide Receptors 119</p> <p>4.3.1 Receptors without Aromatic Units 119</p> <p>4.3.2 Receptors with Aromatic Units 123</p> <p>4.3.3 Metal Complexes as Nucleotide Receptors 131</p> <p>4.3.4 Catalytic Aspects 134</p> <p>4.4 Nucleotide Sensing 140</p> <p>4.4.1 General Aspects 140</p> <p>4.4.2 UV–vis Sensing 140</p> <p>4.4.3 Fluorescence Sensing 142</p> <p>4.5 Soft Materials Incorporating Nucleotides, Nucleosides, and Nucleobases 147</p> <p>4.6 Biomedical Applications 150</p> <p>4.7 Challenges and Future Perspectives 151</p> <p>Acknowledgment 152</p> <p>References 153</p> <p><b>5 Carbohydrate Receptors 161<br /></b><i>Anthony P. Davis</i></p> <p>5.1 Introduction 161</p> <p>5.2 Organic Molecular Receptors 163</p> <p>5.2.1 Acyclic Receptors 164</p> <p>5.2.2 Macrocyclic Receptors 167</p> <p>5.2.3 Macropolycyclic Cage Receptors 171</p> <p>5.3 Metal Complexes as Carbohydrate Receptors 178</p> <p>5.4 Boron‐Based Receptors 180</p> <p>5.5 Conclusions 184</p> <p>References 186</p> <p><b>6 Ion Receptors 193<br /></b><i>Luca Leoni, Antonella Dalla Cort, Frank Biedermann, and Stefan Kubik</i></p> <p>6.1 Introduction 193</p> <p>6.1.1 Potential Applications for Ion Receptors 194</p> <p>6.1.2 Binding Modes of Ion Receptors 194</p> <p>6.2 Cation Receptors 197</p> <p>6.2.1 Neutral Receptors 197</p> <p>6.2.1.1 Crown Ethers and Cryptands 197</p> <p>6.2.1.2 Cyclodextrins 198</p> <p>6.2.1.3 Cucurbiturils 199</p> <p>6.2.1.4 Cavitands 201</p> <p>6.2.2 Negatively Charged Receptors 202</p> <p>6.2.2.1 Cyclophanes 202</p> <p>6.2.2.2 Cryptophanes 204</p> <p>6.2.2.3 Calixarenes 204</p> <p>6.2.2.4 Pillararenes 205</p> <p>6.2.2.5 Molecular Tweezers 206</p> <p>6.2.2.6 Acyclic Cucurbiturils 208</p> <p>6.2.3.1 Metallacycles 209</p> <p>6.2.3.2 Coordination Cages 210</p> <p>6.3 Anion Receptors 211</p> <p>6.3.1 Metal‐Containing Receptors 211</p> <p>6.3.1.1 Coordination Cages 212</p> <p>6.3.1.2 Tetraazamacrocycle‐Based Receptors 214</p> <p>6.3.1.3 Diethylenetriamine‐ and Bis(2‐pyridylmethyl)amine‐Based Receptors 215</p> <p>6.3.1.4 Tris(2‐aminoethyl)amine and Tris(2‐pyridylmethyl)amine‐Based Receptors 218</p> <p>6.3.1.5 Miscellaneous 220</p> <p>6.3.2 Positively Charged Receptors 221</p> <p>6.3.2.1 Receptors with Quaternary Ammonium Groups 221</p> <p>6.3.2.2 Amine‐Based Receptors 223</p> <p>6.3.2.3 Guanidine‐Based Receptors 225</p> <p>6.3.2.4 Imidazolium‐Based Receptors 227</p> <p>6.3.3 Negatively Charged Receptors 228</p> <p>6.3.4 Neutral Receptors 231</p> <p>6.4 Zwitterion Receptors 236</p> <p>6.5 Conclusion and Future Challenges 238</p> <p>References 239</p> <p><b>7 Coordination Compounds 249<br /></b><i>Anna J. McConnell and Marc Lehr</i></p> <p>7.1 Introduction 249</p> <p>7.2 Organometallic Compounds 249</p> <p>7.2.1 Macrocycles 251</p> <p>7.2.2 Cages 252</p> <p>7.3 Metallomacrocycles 253</p> <p>7.4 Metallosupramolecular Helicates 255</p> <p>7.4.1 Transition Metal Helicates 255</p> <p>7.4.2 Lanthanide Helicates 257</p> <p>7.5 Metallosupramolecular Bowls and Tubes 260</p> <p>7.6 Metallosupramolecular Cages 262</p> <p>7.6.1 Design Considerations 263</p> <p>7.6.2 Thermodynamics of Guest Binding 263</p> <p>7.6.3 Cage and Guest Dynamics upon Encapsulation 265</p> <p>7.6.4 Chiral Recognition 266</p> <p>7.6.5 Encapsulation of Biorelevant Molecules 266</p> <p>7.6.6 Stabilization of Encapsulated Species 269</p> <p>7.6.7 Controlling Reactivity 269</p> <p>7.6.8 Catalysis 270</p> <p>7.7 Metal–Organic Frameworks 272</p> <p>7.8 Challenges and Future Directions 273</p> <p><b>8 Aqueous Supramolecular Polymers and Hydrogels 285<br /></b><i>Daniel Spitzer and Pol Besenius</i></p> <p>8.1 Introduction 285</p> <p>8.2 Hydrogen‐Bonded Supramolecular Systems 287</p> <p>8.3 Host–Guest Induced Supramolecular Polymers and Hydrogels 292</p> <p>8.4 Metal–Ligand Coordinated Systems 296</p> <p>8.5 π‐Conjugated Systems 301</p> <p>8.6 Low Molecular Weight Hydrogelator Systems 307</p> <p>8.7 Peptide‐Based Molecular Amphiphiles and Their Supramolecular Systems 314</p> <p>8.8 Bioinspired Systems 321</p> <p>8.9 Challenges and Future Directions 326</p> <p>References 326</p> <p><b>9 Foldamers 337<br /></b><i>Morgane Pasco, Christel Dolain, and Gilles Guichard</i></p> <p>9.1 Introduction 337</p> <p>9.2 Discrete Protein‐Like Architectures by Lateral Assemblies of Helical Foldamers 338</p> <p>9.2.1 Bioinspired Helix Assemblies: Top‐Down Approaches 340</p> <p>9.2.2 Bioinspired Helix Assemblies: Bottom‐Up Approaches 344</p> <p>9.3 Helix Duplexes in Aqueous Solution 350</p> <p>9.4 Assemblies of Extended Chains 355</p> <p>9.5 Elongated Nanostructures by Self‐Assembly 357</p> <p>9.6 Applications 359</p> <p>9.6.1 Host–Guest Interactions With and Within Helix Bundles 359</p> <p>9.6.2 Self‐Assembling Foldamers Targeting Heparin 362</p> <p>9.6.3 Catalysis with Self‐Assembled Foldamers 363</p> <p>9.6.4 Foldamer‐Mediated Protein Oligomerization 364</p> <p>9.6.5 Nanopores by Insertion of Foldamers into Phospholipid Membranes 366</p> <p>9.7 Challenges and Future Directions 366</p> <p>Acknowledgments 367</p> <p>References 367</p> <p><b>10 Vesicles and Micelles 375<br /></b><i>Wilke C. de Vries and Bart Jan Ravoo</i></p> <p>10.1 Introduction 375</p> <p>10.2 Building Blocks and Structure of Vesicles and Micelles 376</p> <p>10.2.1 Conventional Building Blocks and Packing Parameter 376</p> <p>10.2.2 Driving Forces and Dynamics 379</p> <p>10.2.3 Nonconventional Building Blocks 382</p> <p>10.3 Stimulus‐Responsive Vesicles and Micelles 387</p> <p>10.3.1 Endogenous Stimuli: Redox and pH 387</p> <p>10.3.1.1 Redox 387</p> <p>10.3.1.2 pH 389</p> <p>10.3.2 Exogenous Stimuli: Light and Temperature 391</p> <p>10.3.2.1 Light 391</p> <p>10.3.2.2 Temperature 392</p> <p>10.4 Vesicles and Micelles as Template Structures for Nanomaterials 393</p> <p>10.4.1 Condensation and Polymerization Reactions Using Template Structures 393</p> <p>10.4.2 Stabilization of Vesicle and Micelle Structures by Cross‐Linking 394</p> <p>10.4.3 Polymer Shells Enclosing Vesicle Templates 395</p> <p>10.5 Molecular Recognition of Vesicles and Micelles in Biomimetic Systems and Nanomaterials 397</p> <p>10.5.1 Macrocyclic Amphiphiles 397</p> <p>10.5.2 Carbohydrate and Peptide‐Based Recognition 399</p> <p>10.5.3 DNA‐Based Recognition 402</p> <p>10.6 Challenges and Future Directions 404</p> <p>References 405</p> <p><b>11 Monolayer‐Protected Gold Nanoparticles for Molecular Sensing and Catalysis 413<br /></b><i>Fabrizio Mancin, Leonard J. Prins, Federico Rastrelli, and Paolo Scrimin</i></p> <p>11.1 Introduction 413</p> <p>11.2 Analytical Techniques 414</p> <p>11.2.1 Nuclear Magnetic Resonance Spectroscopy 414</p> <p>11.2.2 Electron Paramagnetic Resonance Spectroscopy 416</p> <p>11.2.3 Fluorescence Spectroscopy 417</p> <p>11.2.4 Isothermal Titration Calorimetry 417</p> <p>11.2.5 Surface‐Enhanced Raman Scattering 418</p> <p>11.3 Molecular Recognition and Chemosensing of Small Molecules 418</p> <p>11.3.1 Multivalent Binding Interactions at the Monolayer Surface 419</p> <p>11.3.2 Binding Pockets in the Monolayer 420</p> <p>11.3.3 Gold Nanoparticle‐Based Chemosensors 426</p> <p>11.3.3.1 Indicator Displacement Assays 426</p> <p>11.3.3.2 NMR Chemosensing 428</p> <p>11.4 Catalysis by Nanozymes 430</p> <p>11.5 Controlling Molecular Recognition Processes at the Monolayer 435</p> <p>11.5.1 Regulatory Mechanisms 435</p> <p>11.5.2 Adaptive Multivalent Surfaces 438</p> <p>11.6 Challenges and Future Directions 442</p> <p>References 442</p> <p><b>12 Optical Probes and Sensors 449<br /></b><i>Pavel Anzenbacher, Jr and Lorenzo M. Mosca</i></p> <p>12.1 Introduction and Lexicon 449</p> <p>12.2 Brief Fundamentals of Molecular Photoprocesses 451</p> <p>12.3 Some Comments on the Design of Probes and Sensors 455</p> <p>12.3.1 General Aspects 455</p> <p>12.3.2 Fighting with Water 457</p> <p>12.4 Probes and Sensors for Electroneutral Species 459</p> <p>12.4.1 Carbohydrates 459</p> <p>12.5 Probes and Sensor for Cations 462</p> <p>12.5.1 Alkali and Alkali‐Earth Cations 462</p> <p>12.5.2 First‐Row Transition Metal Ions 464</p> <p>12.5.3 Heavy Metal Ions, Particularly Cadmium and Mercury 467</p> <p>12.6 Probes and Sensors for Anions 469</p> <p>12.6.1 Fluoride 469</p> <p>12.6.2 Cyanide 472</p> <p>12.6.3 Inorganic and Organic Phosphates 473</p> <p>12.6.4 Carboxylates 482</p> <p>12.6.5 Other Anions of Interest 487</p> <p>12.6.6 Sensors for Multiple Anions 487</p> <p>12.7 Sensing of Biomacromolecules 489</p> <p>12.8 Challenges and Future Directions 491</p> <p>References 492</p> <p><b>13 Probes for Medical Imaging 501<br /></b><i>Felicia M. Roland and Bradley D. Smith</i></p> <p>13.1 Medical Imaging 501</p> <p>13.2 Structure and Supramolecular Properties of Molecular Probes 503</p> <p>13.2.1 Structure 503</p> <p>13.2.2 Linkers 503</p> <p>13.2.3 Reporter Groups 504</p> <p>13.2.4 Design Aspects 504</p> <p>13.3 Targeting Groups for Receptors 506</p> <p>13.3.1 Drug‐Like Molecules 506</p> <p>13.3.2 Vitamins 507</p> <p>13.3.3 Peptides 508</p> <p>13.3.4 Antibodies 508</p> <p>13.3.5 Aptamers 510</p> <p>13.4 Signal Enhancement Strategies 511</p> <p>13.4.1 Intracellular Accumulation 511</p> <p>13.4.2 Signal Activation by Enzymes 512</p> <p>13.5 Targeting Cell Surface Biomolecules 513</p> <p>13.5.1 Anionic Phospholipids 513</p> <p>13.5.2 Glycans 514</p> <p>13.5.3 Antigens 515</p> <p>13.6 Clinical Development 516</p> <p>13.6.1 Government Approval 516</p> <p>13.6.2 Multimodal Approaches 518</p> <p>13.6.3 Theranostic Approaches 519</p> <p>13.7 Future Role of Supramolecular Chemistry 520</p> <p>Acknowledgments 521</p> <p>References 521</p> <p><b>14 Supramolecular Catalysis in Water 525<br /></b><i>Piet W. N. M. van Leeuwen and Matthieu Raynal</i></p> <p>14.1 Introduction 525</p> <p>14.2 Classification of Supramolecular Catalysts Operating in Water 527</p> <p>14.2.1 Mass Transfer Promotion through Substrate Sequestration (S1) 529</p> <p>14.2.2 Catalysis by Confinement (S2) 529</p> <p>14.2.3 Directed Substrate Reactivity (S3) 531</p> <p>14.2.4 Construction and Modulation of the Catalytic Structure (S4) 532</p> <p>14.3 Synthetic Hosts for Catalysis in Water 533</p> <p>14.3.1 Cyclodextrins (CDs) 536</p> <p>14.3.2 Cucurbit[<i>n</i>]urils (CB<i>n</i>) 536</p> <p>14.3.3 Hosts with Aromatic Walls 537</p> <p>14.3.4 Velcrands 538</p> <p>14.3.5 Octa‐acid 538</p> <p>14.3.6 Metallocages 538</p> <p>14.3.7 Hyperbranched Polymers 539</p> <p>14.3.8 Dendrimers 539</p> <p>14.3.9 Micelles 540</p> <p>14.3.10 Vesicles 541</p> <p>14.4 Supramolecular Catalysts for the Aqueous Biphasic Hydroformylation Reaction 542</p> <p>14.5 Supramolecular Catalysts for Other Organometallic Reactions in Water 547</p> <p>14.6 Future Directions 550</p> <p>References 551</p> <p>Index 567</p>
<p><b><i>Stefan Kubik</i></b> <i>is Professor of Organic Chemistry at the University of Kaiserslautern. He has authored more than 1000 keywords for the chemistry encyclopedia Römpp-Online, acted as Guest Editor of the online themed collection of Organic & Biomolecular Chemistry on Supramolecular Chemistry in Water together with A. Dalla Cort and A. P. Davis, and is Associate Editor of the Journal of Inclusion Phenomena and Macrocyclic Chemistry.</i>
<p><b>Provides deep insight into the concepts and recent developments in the area of supramolecular chemistry in water</b> <p>Written by experts in their respective field, this comprehensive reference covers various aspects of supramolecular chemistry in water—from fundamental ones to applications. It provides readers with a basic introduction to the current understanding of the properties of water and examines the different receptor types available in water and the types of substrates that can be bound. It also looks at applications of the supramolecular chemistry in water in areas such as materials, optical sensing, medicinal imaging, and catalysis. <p><i>Supramolecular Chemistry in Water</i> comprises five major sections that address topics such as water properties, molecular recognition, association and aggregation phenomena, optical detection and imaging, and supramolecular catalysis. It covers the chemistry and physical chemistry of water; water-mediated molecular recognition; peptide and protein receptors; nucleotide receptors; carbohydrate receptors; and ion receptors. The book also explains current applications of coordination compounds; self-assembled polymers and gels; foldamers; vesicles and micelles; and surface-modified nanoparticles in water. In addition, it provides in-depth information on indicators and optical probes, as well as probes for medical imaging. <ul> <li>Covers, in a timely manner, an emerging area in chemistry that is growing more important every day</li> <li>Addresses topics such as molecular recognition, aggregation, catalysis, and more</li> <li>Offers comprehensive coverage of many subjects ranging from fundamental aspects of the supramolecular chemistry in water to applications</li> <li>Edited by one of the leading international scientists in the field</li> </ul> <p><i>Supramolecular Chemistry in Water</i> is a one-stop-resource not only for chemists working in the field but also for scientists from related disciplines such as organic, inorganic, and physical chemistry as well as water chemistry, biochemistry, and polymer chemistry who are interested in this growing area of research.

Diese Produkte könnten Sie auch interessieren:

Oxidation of Alcohols to Aldehydes and Ketones
Oxidation of Alcohols to Aldehydes and Ketones
von: Gabriel Tojo, Marcos I. Fernandez
PDF ebook
96,29 €
Metal-Catalysed Reactions of Hydrocarbons
Metal-Catalysed Reactions of Hydrocarbons
von: Geoffrey C. Bond
PDF ebook
96,29 €