Details

Soft Matter Nanotechnology


Soft Matter Nanotechnology

From Structure to Function
1. Aufl.

von: Xiaodong Chen, Harald Fuchs

151,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 20.04.2015
ISBN/EAN: 9783527682164
Sprache: englisch
Anzahl Seiten: 456

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Using the well-honed tools of nanotechnology, this book presents breakthrough results in soft matter research, benefitting from the synergies between the chemistry, physics, biology, materials science, and engineering communities. <br> The team of international authors delves beyond mere structure-making and places the emphasis firmly on imparting functionality to soft nanomaterials with a focus on devices and applications. Alongside reviewing the current level of knowledge, they also put forward novel ideas to foster research and development in such expanding fields as nanobiotechnology and nanomedicine. As such, the book covers DNA-induced nanoparticle assembly, nanostructured substrates for circulating tumor cell capturing, and organic nano field effect transistors, as well as advanced dynamic gels and self-healing electronic nanodevices.<br> With its interdisciplinary approach this book gives readers a complete picture of nanotechnology with soft matter.
<p>List of Contributors XIII</p> <p>Preface XIX</p> <p><b>1 Chemical Reactions for the Synthesis of Organic Nanomaterials on Surfaces 1</b><br /><i>Hong-Ying Gao, Oscar Díaz Arado, Harry Mönig, and Harald Fuchs</i></p> <p>1.1 Introduction 1</p> <p>1.1.1 Ullmann Coupling 2</p> <p>1.1.2 Condensation Reactions 5</p> <p>1.2 Alkane Polymerization 6</p> <p>1.3 Azide–Alkyne Cycloaddition 6</p> <p>1.4 Glaser Coupling 9</p> <p>1.5 Decarboxylative Polymerization of Acids 13</p> <p>1.6 Conclusions 16</p> <p>Acknowledgments 17</p> <p>References 17</p> <p><b>2 Self-Assembly of Organic Molecules into Nanostructures 21</b><br /><i>Long Qin, Kai Lv, Zhaocun Shen, and Minghua Liu</i></p> <p>2.1 Introduction 21</p> <p>2.2 Classification of Nanostructures 22</p> <p>2.3 General Self-Assembly Method for the Construction of Nanostructures 23</p> <p>2.3.1 Reprecipitation 24</p> <p>2.3.2 Gelation 26</p> <p>2.3.3 Langmuir–Blodgett Technique 27</p> <p>2.3.4 Layer-by-Layer Assembly 29</p> <p>2.3.5 Self-Assembly in Solution 31</p> <p>2.4 Molecular Design and Building Blocks 33</p> <p>2.4.1 Amphiphiles 33</p> <p>2.4.1.1 Typical Amphiphiles 35</p> <p>2.4.1.2 Bolaamphiphiles 35</p> <p>2.4.1.3 Gemini Amphiphiles 37</p> <p>2.4.1.4 Triangular Amphiphiles 38</p> <p>2.4.1.5 Supra-amphiphiles 40</p> <p>2.4.2 Gelators 41</p> <p>2.4.2.1 Cholesterol-Based Gelators 41</p> <p>2.4.2.2 Alkane- and Fatty Acid-Based Gelators 43</p> <p>2.4.2.3 Nucleoside-Based Gelators 43</p> <p>2.4.2.4 Amino Acid- and Peptide-Based Gelators 45</p> <p>2.4.2.5 Carbohydrate-Based Gelators 50</p> <p>2.4.3 π-Functionalized System 51</p> <p>2.4.3.1 Porphyrin 51</p> <p>2.4.3.2 Molecular Graphene 53</p> <p>2.4.3.3 π-Conjugated Gelators 54</p> <p>2.4.4 Dendrimers 55</p> <p>2.5 Functions of Some Typical Nanostructures 56</p> <p>2.5.1 Vesicles/Hollow Spheres 56</p> <p>2.5.2 Nanotubes 62</p> <p>2.5.2.1 Self-Assembled Lipid Nanotubes 62</p> <p>2.5.2.2 Self-Assembled Peptide Nanotubes 65</p> <p>2.5.2.3 Functionalization of Nanotubes 69</p> <p>2.5.3 Nanofibers 74</p> <p>2.6 Conclusions and Outlook 79</p> <p>References 80</p> <p><b>3 Supramolecular Nanotechnology: Soft Assembly of Hard Nanomaterials 95</b><br /><i>Katsuhiko Ariga, Qingmin Ji, and Jonathan P. Hill</i></p> <p>3.1 Introduction 95</p> <p>3.2 Soft Cell-Like Structures with Hard Nanomaterials 96</p> <p>3.2.1 Cerasome: Inorganic Surface Cell 96</p> <p>3.2.2 Flake–Shell Capsule 98</p> <p>3.2.3 Metallic Cells 100</p> <p>3.3 For Hierarchical Assembly: LbL and Others 101</p> <p>3.3.1 Mesoporous Carbon in Hierarchical Assembly 101</p> <p>3.3.2 Mesoporous Carbon Capsule in Layer-by-Layer Film 103</p> <p>3.3.3 Layer-by-Layer Assembly of Graphene and Ionic Liquids 104</p> <p>3.3.4 LbL Films of Mesoporous Silica Capsule for Controlled Release 105</p> <p>3.4 Summary 107</p> <p>Acknowledgments 107</p> <p>References 107</p> <p><b>4 Nanoparticles: Important Tools to Overcome the Blood–Brain Barrier and Their Use for Brain Imaging 109</b><br /><i>Ruirui Qiao, Mingyuan Gao, and Hans-Joachim Galla</i></p> <p>4.1 Introduction 109</p> <p>4.2 Physiology of the Blood–Brain Barrier 110</p> <p>4.2.1 The Endothelial Blood–Brain Barrier 110</p> <p>4.2.2 The Blood–CSF Barrier 111</p> <p>4.2.3 Regulation of the Barrier Tightness 112</p> <p>4.2.4 Transport Routes and Drug Permeability across the Blood–Brain Barrier 112</p> <p>4.2.5 In vitro Models of the BBB and Blood–CSF Barrier 114</p> <p>4.3 Definition and Type of Nanoparticles and Nanocarriers for Brain Uptake 115</p> <p>4.3.1 Organic Nanoparticles 115</p> <p>4.3.1.1 Polymeric Nanoparticles 116</p> <p>4.3.1.2 Liposomes and Lipidic Nanoparticles 117</p> <p>4.3.1.3 Nanomeric Emulsions, Micelles, and Nanogels 117</p> <p>4.3.1.4 Carbohydrates 118</p> <p>4.3.2 Inorganic Nanoparticles 118</p> <p>4.3.2.1 Magnetic Nanoparticles 119</p> <p>4.3.2.2 Semiconductor Nanoparticles 119</p> <p>4.3.2.3 Gold Nanoparticles 120</p> <p>4.3.3 Surface Functionalization of Nanoparticles for BBB Transport 120</p> <p>4.4 Nanoparticles and Imaging 122</p> <p>4.4.1 Magnetic Resonance Imaging (MRI) 122</p> <p>4.4.2 Optical Imaging 123</p> <p>4.5 Conclusion and Outlook 124</p> <p>Acknowledgment 124</p> <p>References 125</p> <p><b>5 Organic Nanophotonics: Controllable Assembly of Optofunctional Molecules toward Low-Dimensional Materials with Desired Photonic Properties 131</b><br /><i>Yongli Yan and Yong Sheng Zhao</i></p> <p>5.1 Introduction 131</p> <p>5.2 From Molecules to Assembly 132</p> <p>5.2.1 Inherent Intermolecular Interactions 133</p> <p>5.2.2 Influences of External Factors 137</p> <p>5.2.2.1 Solvent Effect in Assembly 137</p> <p>5.2.2.2 Site-Selected Assembly on Specific Substrates 138</p> <p>5.3 From Assembly to Structures 139</p> <p>5.3.1 Structure Control through Intermolecular Interactions 140</p> <p>5.3.1.1 Controlling the Structures via Molecular Design 140</p> <p>5.3.1.2 Structures Obtained from the Synergistic Assembly of Different Compounds 141</p> <p>5.3.2 Structure Modulation through External Factors 143</p> <p>5.3.2.1 Structures versus Aging Time 143</p> <p>5.3.2.2 Heterostructures through Site-Specific Epitaxial Growth 144</p> <p>5.4 From Structures to Photonic Properties 145</p> <p>5.4.1 Nanowire Heterojunctions 145</p> <p>5.4.1.1 Dendritic Heterostructures as Optical Routers 146</p> <p>5.4.1.2 Nanowire p–n Junctions as Photoelectric Transducers 146</p> <p>5.4.2 Doped Nanostructures 149</p> <p>5.4.2.1 Uniformly Doped Structures 149</p> <p>5.4.2.2 Gradiently Doped Structures 151</p> <p>5.4.2.3 Core/Sheath Structures 153</p> <p>5.5 Conclusions 154</p> <p>Acknowledgments 157</p> <p>References 157</p> <p><b>6 Functional Lipid Assemblies by Dip-Pen Nanolithography and Polymer Pen Lithography 161</b><br /><i>Michael Hirtz, Sylwia Sekula-Neuner, Ainhoa Urtizberea, and Harald Fuchs</i></p> <p>6.1 Introduction 161</p> <p>6.2 Techniques and Methods 161</p> <p>6.2.1 Dip-Pen Nanolithography 161</p> <p>6.2.2 Polymer Pen Lithography 163</p> <p>6.3 Ink Transfer Models 164</p> <p>6.3.1 DPN of Liquid Inks 165</p> <p>6.3.2 DPN of Diffusive Inks 165</p> <p>6.3.3 DPN of Lipid Inks 166</p> <p>6.3.4 Ink Transfer in PPL 170</p> <p>6.4 Applications 172</p> <p>6.4.1 Applications in Sensing 172</p> <p>6.4.2 Biological Applications 176</p> <p>6.5 Conclusions 182</p> <p>Acknowledgments 182</p> <p>References 182</p> <p><b>7 PEG-Based Antigen-Presenting Cell Surrogates for Immunological Applications 187</b><br /><i>Ilia Platzman, Gerri Kannenberg, Jan-Willi Janiesch, Jovana Matic i, and Joachim P. Spatz</i></p> <p>7.1 Introduction 187</p> <p>7.2 Elastic Nanopatterned and Specifically Biofunctionalized 2D PEG-DA Hydrogels: General Properties 189</p> <p>7.2.1 Block Copolymer Micellar Nanolithography (BCML) 189</p> <p>7.2.2 Fabrication and Characterization of Nanopatterned PEG-DA Hydrogels 191</p> <p>7.2.3 Biofunctionalization 194</p> <p>7.2.4 Cell Experiments 195</p> <p>7.2.4.1 T-Cells Isolation 195</p> <p>7.2.4.2 T-Cells Stimulation 195</p> <p>7.2.4.3 T-Cells Proliferation 196</p> <p>7.2.4.4 Results 196</p> <p>7.3 Nanostructured PEG-DA Hydrogel Beads: General Properties 198</p> <p>7.3.1 Surfactant Synthesis 200</p> <p>7.3.2 Fabrication of Nanostructured PEG-DA Hydrogel Beads by Droplet-Based Microfluidics 201</p> <p>7.3.3 Characterization of Nanostructured PEG-DA Hydrogel Beads 203</p> <p>7.3.4 Biofunctionalization 204</p> <p>7.4 Nanostructured and Specifically Biofunctionalized Droplets of Water-in-Oil Emulsion: General Properties 205</p> <p>7.4.1 Surfactant Synthesis 207</p> <p>7.4.2 Droplet-Based Microfluidics 209</p> <p>7.4.3 Characterization of the Gold Nanostructured Droplets of Water-in-Oil Emulsion 209</p> <p>7.4.4 Biofunctionalization of the Nanostructured Droplets 209</p> <p>7.4.5 Cell Experiments 211</p> <p>7.4.5.1 Cell Culture 211</p> <p>7.4.5.2 Cell Recovery and Live/Dead Staining 212</p> <p>7.4.5.3 Results 212</p> <p>7.5 Summary and Outlook for the Future 213</p> <p>Acknowledgments 213</p> <p>References 213</p> <p><b>8 Soft Matter Assembly for Atomically Precise Fabrication of Solid Oxide 217</b><br /><i>Norifusa Satoh</i></p> <p>8.1 Introduction 217</p> <p>8.2 The Ultimate Goal of Nanotechnology: Atomically Precise Fabrication 217</p> <p>8.3 Soft Mater Assembly for Atomically Precise Oxide Layers 220</p> <p>8.4 Soft Matter Assembly for Atomically Precise Oxide Dots 221</p> <p>8.5 Summary for the Future Works 224</p> <p>References 225</p> <p><b>9 Conductive Polymer Nanostructures 233</b><br /><i>Lin Jiang, Carsten Hentschel, Bin Dong, and Lifeng Chi</i></p> <p>9.1 Introduction 233</p> <p>9.2 Solution-Based Synthesis of Conducting Polymer Nanostructures 234</p> <p>9.2.1 Soft Template Synthesis 234</p> <p>9.2.2 Hard Template Method 236</p> <p>9.3 Substrate-Based Fabrication of Conducting Polymer Nanostructures 237</p> <p>9.3.1 Add to Surface 237</p> <p>9.3.1.1 Direct Writing 237</p> <p>9.3.1.2 In Situ Synthesis or Assembly 238</p> <p>9.3.2 Remove from Surface 242</p> <p>9.3.2.1 Nanoscratching 242</p> <p>9.3.2.2 Etching 243</p> <p>9.4 Electrospinning Technique of Conducting Polymer 245</p> <p>9.5 Summary and Outlook 250</p> <p>References 251</p> <p><b>10 DNA-Induced Nanoparticle Assembly 259</b><br /><i>Anne Buchkremer and Ulrich Simon</i></p> <p>10.1 Introduction 259</p> <p>10.2 DNA as a Template Material 262</p> <p>10.2.1 On Modified Linear DNA Strands 262</p> <p>10.2.2 On DNA Origami Structures 265</p> <p>10.2.3 On Geometrically Tailored DNA 266</p> <p>10.3 DNA as Ligand 267</p> <p>10.3.1 DNA Functionalization of Gold Nanoparticles and Network Formation 267</p> <p>10.3.2 Extended Superstructures 271</p> <p>10.3.3 Finite Size DNA–AuNP Assemblies 273</p> <p>10.3.4 Aggregates Composed of Different Particle Geometries and Morphologies 279</p> <p>10.4 Applications 282</p> <p>10.5 Summary 286</p> <p>References 287</p> <p><b>11 Nanostructured Substrates for Circulating Tumor Cell Capturing 293</b><br /><i>Jingxin Meng, Hongliang Liu, and Shutao Wang</i></p> <p>11.1 Introduction 293</p> <p>11.2 Nanostructured Substrates for CTC Capturing 294</p> <p>11.2.1 Nanoparticles 295</p> <p>11.2.2 Nanofractals 297</p> <p>11.2.3 Nanowires 298</p> <p>11.2.4 Nanoposts/pillars 300</p> <p>11.2.5 Nanotubes 302</p> <p>11.2.6 Nanofibers 303</p> <p>11.2.7 Nanopores 304</p> <p>11.3 Nanostructured Substrates for Other Cells Capturing 306</p> <p>11.4 Conclusions and Perspectives 306</p> <p>References 307</p> <p><b>12 Organic Nano Field-Effect Transistor 309</b><br /><i>Yonggang Zhen and Wenping Hu</i></p> <p>12.1 Introduction 309</p> <p>12.2 The Fabrication of Organic Semiconductor Nanostructures 310</p> <p>12.2.1 Vapor-Phase Method 310</p> <p>12.2.2 Solution Process 317</p> <p>12.2.3 Other Methods 328</p> <p>12.3 Device Structures of Organic Nano Field-Effect Transistor 332</p> <p>12.4 The Preparation of Organic Nano Field-Effect Transistor 335</p> <p>12.4.1 The Transfer of Organic Nanocrystals 335</p> <p>12.4.2 Electrode of Organic Semiconductor Nanocrystal Field-Effect Transistor 339</p> <p>12.5 Properties of Organic Nanoscale Field-Effect Transistor 345</p> <p>12.6 Application of Organic Nano-FETs 347</p> <p>12.7 Summary and Outlook 350</p> <p>References 351</p> <p><b>13 Advanced Dynamic Gels 357</b><br /><i>Rekha G. Shrestha and Masanobu Naito</i></p> <p>13.1 Introduction 357</p> <p>13.2 Gels in Nature 358</p> <p>13.3 Characterization of VEGs 359</p> <p>13.3.1 Rheometer 359</p> <p>13.3.2 Small-Angle Scattering 360</p> <p>13.3.3 Transmission Electron Microscopy 361</p> <p>13.4 Redox-Responsive VEGs 362</p> <p>13.5 pH-Responsive VEGs 363</p> <p>13.6 Temperature-Responsive VEGs 364</p> <p>13.7 Photoresponsive VEGs 369</p> <p>13.8 Applications 373</p> <p>13.9 Conclusions 374</p> <p>13.10 Theory 375</p> <p>References 379</p> <p><b>14 Micro/Nanocrystal Conversion beyond Inorganic Nanostructures 385</b><br /><i>Jiansheng Wu, Li Junbo, and Qichun Zhang</i></p> <p>14.1 Introduction 385</p> <p>14.2 Micro/Nanostructure Conversion through Charge Transfer Complex Formation 385</p> <p>14.3 Micro/Nanostructure Conversion through Ion and Ligand Exchange 388</p> <p>14.4 Micro/Nanostructure Conversion through Reduction 391</p> <p>14.5 Micro/Nanostructure Conversion through Photoinduced Reaction 392</p> <p>14.6 Micro/Nanostructure Conversion through Thermal-induced Reaction 394</p> <p>14.7 Properties and Applications 395</p> <p>14.7.1 Optical Properties 395</p> <p>14.7.2 Electronic Properties and Information Storage 396</p> <p>14.7.3 Mechanical Properties and Photomechanical Actuator 397</p> <p>14.8 Summary and Outlook 397</p> <p>References 398</p> <p><b>15 Self-Healing Electronic Nanodevices 401</b><br /><i>Li Zhang, Bevita K. Chandran, and Xiaodong Chen</i></p> <p>15.1 Introduction 401</p> <p>15.2 Self-Healing Materials 402</p> <p>15.3 Self-Healing Electrical Conductors 403</p> <p>15.4 Self-Healing in Energy Storage Devices 408</p> <p>15.5 Self-Healing Electronic Skin 414</p> <p>15.6 Conclusive Remarks and Outlook 415</p> <p>References 416</p> <p>Index 419</p>
Xiaodong Chen is a Singapore NRF Fellow and Nanyang Assistant Professor at the School of Materials Science and Engineering, Nanyang Technological University (Singapore). He received his BSc degree in Chemistry from Fuzhou University (China) in 1999, his MSc degree in Physical Chemistry from the Chinese Academy of Sciences in 2002, and his PhD degree in Biochemistry from the University of Munster (Germany) in 2006. After his postdoctoral work at Northwestern University (USA), he started his independent research career at Nanyang Technological University in 2009. His research interests include self-assembly, plasmonics, nanoelectronics, and integrated nano-photo-bio interfaces.<br> <br> Harald Fuchs is Professor of Experimental Physics at the University of Munster (Germany) and Scientific Director of the Center of Nanotechnology (CeNTech) in Munster. His research focuses on nanoscale science and nanotechnology, ranging from scanning probe microscopy to self-organized nanostructure fabrication, and nano-bio systems. He has published more than 450 scientific articles in top journals and received several awards. He is currently a member of various scientific organizations, German speaker of the international collabroation project TRR 61 commonly funded by DFG and NSFC, and founding member of the Herbert Gleiter Institute at NJUST, Nanjing China. He is elected member of the German National Academy of Science "Leopoldina" , the German Academy of Science and Engineering "acatech", and TWAS.
<p>Using the well-honed tools of nanotechnology, this book presents breakthrough results in soft matter research, benefitting from the synergies between the chemistry, physics, biology, materials science, and engineering communities.</p> <p>The team of international authors delves beyond mere structure-making and places the emphasis firmly on imparting functionality to soft nanomaterials with a focus on devices and applications. Alongside reviewing the current level of knowledge, they also put forward novel ideas to foster research and development in such expanding fields as nanobiotechnology and nanomedicine. As such, the book covers DNA-induced nanoparticle assembly, nanostructured substrates for circulating tumor cell<br />capturing, and organic nano field effect transistors, as well as advanced dynamic gels and self-healing electronic nanodevices.</p> <p>With its interdisciplinary approach this book gives readers a complete picture of nanotechnology with soft matter.</p>

Diese Produkte könnten Sie auch interessieren: