Details

Microwave Circuit Design Using Linear and Nonlinear Techniques


Microwave Circuit Design Using Linear and Nonlinear Techniques


3. Aufl.

von: George D. Vendelin, Anthony M. Pavio, Ulrich L. Rohde, Matthias Rudolph

149,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 08.04.2021
ISBN/EAN: 9781119741695
Sprache: englisch
Anzahl Seiten: 1200

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Four leaders in the field of microwave circuit design share their newest insights into the latest aspects of the technology</b></p> <p>The third edition of <i>Microwave Circuit Design Using Linear and Nonlinear Techniques</i> delivers an insightful and complete analysis of microwave circuit design, from their intrinsic and circuit properties to circuit design techniques for maximizing performance in communication and radar systems. This new edition retains what remains relevant from previous editions of this celebrated book and adds brand-new content on CMOS technology, GaN, SiC, frequency range, and feedback power amplifiers in the millimeter range region. The third edition contains over 200 pages of new material.</p> <p>The distinguished engineers, academics, and authors emphasize the commercial applications in telecommunications and cover all aspects of transistor technology. Software tools for design and microwave circuits are included as an accompaniment to the book. In addition to information about small and large-signal amplifier design and power amplifier design, readers will benefit from the book's treatment of a wide variety of topics, like:</p> <ul> <li>An in-depth discussion of the foundations of RF and microwave systems, including Maxwell's equations, applications of the technology, analog and digital requirements, and elementary definitions</li> <li>A treatment of lumped and distributed elements, including a discussion of the parasitic effects on lumped elements</li> <li>Descriptions of active devices, including diodes, microwave transistors, heterojunction bipolar transistors, and microwave FET</li> <li>Two-port networks, including S-Parameters from SPICE analysis and the derivation of transducer power gain</li> </ul> <p>Perfect for microwave integrated circuit designers, the third edition of <i>Microwave Circuit Design Using Linear and Nonlinear Techniques</i> also has a place on the bookshelves of electrical engineering researchers and graduate students. It's comprehensive take on all aspects of transistors by world-renowned experts in the field places this book at the vanguard of microwave circuit design research.</p>
<p>Foreword xvii</p> <p>Preface To The Third Edition xix</p> <p><b>1 RF/Microwave Systems 1</b></p> <p>1.1 Introduction 1</p> <p>1.2 Maxwell’s Equations 11</p> <p>1.3 Frequency Bands, Modes, and Waveforms of Operation 13</p> <p>1.4 Analog and Digital Signals 15</p> <p>1.5 Elementary Functions 26</p> <p>1.6 Basic RF Transmitters and Receivers 32</p> <p>1.7 RF Wireless/Microwave/Millimeter Wave Applications 34</p> <p>1.8 Modern CAD for Nonlinear Circuit Analysis 37</p> <p>1.9 Dynamic Load Line 38</p> <p>References 39</p> <p>Bibliography 40</p> <p>Problems 41</p> <p><b>2 Lumped and Distributed Elements 43</b></p> <p>2.1 Introduction 43</p> <p>2.2 Transition from RF to Microwave Circuits 43</p> <p>2.3 Parasitic Effects on Lumped Elements 46</p> <p>2.4 Distributed Elements 53</p> <p>2.5 Hybrid Element: Helical Coil 54</p> <p>References 55</p> <p>Bibliography 57</p> <p>Problems 57</p> <p><b>3 Active Devices 59</b></p> <p>3.1 Introduction 59</p> <p>3.2 Diodes 60</p> <p>3.2.1 Large-Signal Diode Model 61</p> <p>3.2.2 Mixer and Detector Diodes 65</p> <p>3.2.3 Parameter Trade-Offs 70</p> <p>3.2.4 Mixer Diodes 72</p> <p>3.2.5 PIN Diodes 73</p> <p>3.2.6 Tuning Diodes 84</p> <p>3.2.7 <i>Q </i>Factor or Diode Loss 94</p> <p>3.2.8 Diode Problems 99</p> <p>3.2.9 Diode-Tuned Resonant Circuits 105</p> <p>3.3 Microwave Transistors 110</p> <p>3.3.1 Transistor Classification 110</p> <p>3.3.2 Bipolar Transistor Basics 113</p> <p>3.3.3 GaAs and InP Heterojunction Bipolar Transistors 127</p> <p>3.3.4 SiGe HBTs 141</p> <p>3.3.5 Field-Effect Transistor Basics 147</p> <p>3.3.6 GaN, GaAs, and InP HEMTs 158</p> <p>3.3.7 MOSFETs 165</p> <p>3.3.8 Packaged Transistors 182</p> <p>3.4 Example: Selecting Transistor and Bias for Low-Noise Amplification 186</p> <p>3.5 Example: Selecting Transistor and Bias for Oscillator Design 191</p> <p>3.6 Example: Selecting Transistor and Bias for Power Amplification 194</p> <p>3.6.1 Biasing HEMTs 196</p> <p>3.6.2 Biasing HBTs 198</p> <p>References 200</p> <p>Bibliography 203</p> <p>Problems 204</p> <p><b>4 Two-Port Networks 205</b></p> <p>4.1 Introduction 205</p> <p>4.2 Two-Port Parameters 206</p> <p>4.3 <i>S </i>Parameters 216</p> <p>4.4 <i>S </i>Parameters from SPICE Analysis 216</p> <p>4.5 Mason Graphs 217</p> <p>4.6 Stability 221</p> <p>4.7 Power Gains, Voltage Gain, and Current Gain 223</p> <p>4.7.1 Power Gain 223</p> <p>4.7.2 Voltage Gain and Current Gain 229</p> <p>4.7.3 Current Gain 230</p> <p>4.8 Three-Ports 231</p> <p>4.9 Derivation of Transducer Power Gain 234</p> <p>4.10 Differential <i>S </i>Parameters 236</p> <p>4.10.1 Measurements 239</p> <p>4.10.2 Example 239</p> <p>4.11 Twisted-Wire Pair Lines 240</p> <p>4.12 Low-Noise and High-Power Amplifier Design 242</p> <p>4.13 Low-Noise Amplifier Design Examples 245</p> <p>References 254</p> <p>Bibliography 255</p> <p>Problems 255</p> <p><b>5 Impedance Matching 261</b></p> <p>5.1 Introduction 261</p> <p>5.2 Smith Charts and Matching 261</p> <p>5.3 Impedance Matching Networks 269</p> <p>5.4 Single-Element Matching 269</p> <p>5.5 Two-Element Matching 271</p> <p>5.6 Matching Networks Using Lumped Elements 272</p> <p>5.7 Matching Networks Using Distributed Elements 273</p> <p>5.7.1 Twisted-Wire Pair Transformers 273</p> <p>5.7.2 Transmission Line Transformers 274</p> <p>5.7.3 Tapered Transmission Lines 276</p> <p>5.8 Bandwidth Constraints for Matching Networks 277</p> <p>References 287</p> <p>BIBLIOGRAPHY 288</p> <p>PROBLEMS 288</p> <p><b>6 Microwave Filters 294</b></p> <p>6.1 Introduction 294</p> <p>6.2 Low-Pass Prototype Filter Design 295</p> <p>6.2.1 Butterworth Response 295</p> <p>6.2.2 Chebyshev Response 297</p> <p>6.3 Transformations 302</p> <p>6.3.1 Low-Pass Filters: Frequency and Impedance Scaling 302</p> <p>6.3.2 High-Pass Filters 302</p> <p>6.3.3 Bandpass Filters 304</p> <p>6.3.4 Narrow-Band Bandpass Filters 306</p> <p>6.3.5 Band-Stop Filters 309</p> <p>6.4 Transmission Line Filters 312</p> <p>6.4.1 Semilumped Low-Pass Filters 315</p> <p>6.4.2 Richards Transformation 318</p> <p>6.5 Exact Designs and CAD Tools 325</p> <p>6.6 Real-Life Filters 326</p> <p>6.6.1 Lumped Elements 326</p> <p>6.6.2 Transmission Line Elements 327</p> <p>6.6.3 Cavity Resonators 327</p> <p>6.6.4 Coaxial Dielectric Resonators 327</p> <p>6.6.5 Thin-Film Bulk-Wave Acoustic Resonator (FBAR) 327</p> <p>References 330</p> <p>Bibliography 330</p> <p>Problems 330</p> <p><b>7 Noise In Linear and Nonlinear Two-Ports 332</b></p> <p>7.1 Introduction 332</p> <p>7.2 Signal-to-Noise Ratio 334</p> <p>7.3 Noise Figure Measurements 336</p> <p>7.4 Noise Parameters and Noise Correlation Matrix 338</p> <p>7.4.1 Correlation Matrix 338</p> <p>7.4.2 Method of Combining Two-Port Matrix 339</p> <p>7.4.3 Noise Transformation Using the [<i>ABCD</i>] Noise Correlation Matrices 339</p> <p>7.4.4 Relation Between the Noise Parameter and [<i>CA</i>] 340</p> <p>7.4.5 Representation of the <i>ABCD </i>Correlation Matrix in Terms of Noise Parameters [7.4] 342</p> <p>7.4.6 Noise Correlation Matrix Transformations 342</p> <p>7.4.7 Matrix Definitions of Series and Shunt Element 343</p> <p>7.4.8 Transferring All Noise Sources to the Input 344</p> <p>7.4.9 Transformation of the Noise Sources 345</p> <p>7.4.10 <i>ABCD </i>Parameters for CE, CC, and CB Configurations 345</p> <p>7.5 Noisy Two-Port Description 347</p> <p>7.6 Noise Figure of Cascaded Networks 353</p> <p>7.7 Influence of External Parasitic Elements 354</p> <p>7.8 Noise Circles 357</p> <p>7.9 Noise Correlation in Linear Two-Ports Using Correlation Matrices 360</p> <p>7.10 Noise Figure Test Equipment 363</p> <p>7.11 How to Determine Noise Parameters 365</p> <p>7.12 Noise in Nonlinear Circuits 366</p> <p>7.12.1 Noise Sources in the Nonlinear Domain 368</p> <p>7.13 Transistor Noise Modeling 371</p> <p>7.13.1 Noise Modeling of Bipolar and Heterobipolar Transistors 372</p> <p>7.13.2 Noise Modeling of Field-effect Transistors 384</p> <p>References 390</p> <p>Bibliography 393</p> <p>Problems 395</p> <p><b>8 Small- and Large-Signal Amplifier Design 397</b></p> <p>8.1 Introduction 397</p> <p>8.2 Single-Stage Amplifier Design 399</p> <p>8.2.1 High Gain 399</p> <p>8.2.2 Maximum Available Gain and Unilateral Gain 400</p> <p>8.2.3 Low-Noise Amplifier 407</p> <p>8.2.4 High-Power Amplifier 409</p> <p>8.2.5 Broadband Amplifier 410</p> <p>8.2.6 Feedback Amplifier 411</p> <p>8.2.7 Cascode Amplifier 413</p> <p>8.2.8 Multistage Amplifier 420</p> <p>8.2.9 Distributed Amplifier and Matrix Amplifier 421</p> <p>8.2.10 Millimeter-Wave Amplifiers 425</p> <p>8.3 Frequency Multipliers 426</p> <p>8.3.1 Introduction 426</p> <p>8.3.2 Passive Frequency Multiplication 426</p> <p>8.3.3 Active Frequency Multiplication 427</p> <p>8.4 Design Example of 1.9-GHz PCS and 2.1-GHz W-CDMA Amplifiers 429</p> <p>8.5 Stability Analysis and Limitations 430</p> <p>References 435</p> <p>Bibliography 438</p> <p>Problems 440</p> <p><b>9 Power Amplifier Design 442</b></p> <p>9.1 Introduction 442</p> <p>9.2 Characterizing Transistors for Power-Amplifier Design 445</p> <p>9.3 Single-Stage Power Amplifier Design 449</p> <p>9.4 Multistage Design 455</p> <p>9.5 Power-Distributed Amplifiers 462</p> <p>9.6 Class of Operation 480</p> <p>9.6.1 Optimizing Conduction Angle 481</p> <p>9.6.2 Optimizing Harmonic Termination 490</p> <p>9.6.3 Analog Switch-Mode Amplifiers 494</p> <p>9.7 Efficiency and Linearity Enhancement PA Topologies 498</p> <p>9.7.1 The Doherty Amplifier 499</p> <p>9.7.2 Outphasing Amplifiers 502</p> <p>9.7.3 Kahn EER and Envelope Tracking Amplifiers 505</p> <p>9.8 Digital Microwave Power Amplifiers (class-D/S) 514</p> <p>9.8.1 Voltage-Mode Topology 516</p> <p>9.8.2 Current-Mode Topology 521</p> <p>9.9 Power Amplifier Stability 527</p> <p>References 530</p> <p>Bibliography 534</p> <p>Problems 536</p> <p><b>10 Oscillator Design 538</b></p> <p>10.1 Introduction 538</p> <p>10.2 Compressed Smith Chart 544</p> <p>10.3 Series or Parallel Resonance 545</p> <p>10.4 Resonators 546</p> <p>10.4.1 Dielectric Resonators 547</p> <p>10.4.2 YIG Resonators 552</p> <p>10.4.3 Varactor Resonators 552</p> <p>10.4.4 Ceramic Resonators 556</p> <p>10.4.5 Coupled Resonator 558</p> <p>10.4.6 Resonator Measurements 564</p> <p>10.5 Two-Port Oscillator Design 570</p> <p>10.6 Negative Resistance From Transistor Model 579</p> <p>10.7 Oscillator <i>Q </i>and Output Power 586</p> <p>10.8 Noise in Oscillators: Linear Approach 590</p> <p>10.8.1 Leeson’s Oscillator Model 590</p> <p>10.8.2 Low-Noise Design 596</p> <p>10.9 Analytic Approach to Optimum Oscillator Design Using <i>S </i>Parameters 608</p> <p>10.10 Nonlinear Active Models for Oscillators 621</p> <p>10.10.1 Diodes with Hyperabrupt Junction 623</p> <p>10.10.2 Silicon Versus Gallium Arsenide 624</p> <p>10.10.3 Expressions for <i>gm </i>and <i>Gd </i>625</p> <p>10.10.4 Nonlinear Expressions for <i>C</i>gs, <i>G</i>gf, and <i>Ri </i>627</p> <p>10.10.5 Analytic Simulation of <i>I</i>–<i>V </i>Characteristics 628</p> <p>10.10.6 Equivalent-Circuit Derivation 628</p> <p>10.10.7 Determination of Oscillation Conditions 631</p> <p>10.10.8 Nonlinear Analysis 631</p> <p>10.10.9 Conclusion 632</p> <p>10.11 Oscillator Design Using Nonlinear Cad Tools 632</p> <p>10.11.1 Parameter Extraction Method 637</p> <p>10.11.2 Example of Nonlinear Design Methodology: 4-GHz Oscillator– Amplifier 639</p> <p>10.11.3 Conclusion 645</p> <p>10.12 Microwave Oscillators Performance 647</p> <p>10.13 Design of an Oscillator Using Large-Signal <i>Y </i>Parameters 651</p> <p>10.14 Example for Large-Signal Design Based on Bessel Functions 653</p> <p>10.15 Design Example for Best Phase Noise and Good Output Power 658</p> <p>Requirements 658</p> <p>Design Steps 658</p> <p>Design Calculations 662</p> <p>10.16 A Design Example for a 350 MHz Fixed Frequency Colpitts Oscillator 666</p> <p>Step 1: 667</p> <p>Step 2: Biasing 667</p> <p>Step 3: Determination of the Large Signal Transconductance 668</p> <p>10.17 1/<i>f </i>NOISE 678</p> <p>10.18 2400 MHz MOSFET-Based Push–Pull Oscillator 681</p> <p>10.18.1 Design Equations 682</p> <p>10.18.2 Design Calculations 687</p> <p>10.18.3 Phase Noise 688</p> <p>10.19 CAD Solution for Calculating Phase Noise in Oscillators 691</p> <p>10.19.1 General Analysis of Noise Due to Modulation and Conversion in Oscillators 691</p> <p>10.19.2 Modulation by a Sinusoidal Signal 692</p> <p>10.19.3 Modulation by a Noise Signal 693</p> <p>10.19.4 Oscillator Noise Models 695</p> <p>10.19.5 Modulation and Conversion Noise 696</p> <p>10.19.6 Nonlinear Approach for Computation of Noise Analysis of Oscillator Circuits 696</p> <p>10.19.7 Noise Generation in Oscillators 699</p> <p>10.19.8 Frequency Conversion Approach 699</p> <p>10.19.9 Conversion Noise Analysis 699</p> <p>10.19.10 Noise Performance Index Due to Frequency Conversion 700</p> <p>10.19.11 Modulation Noise Analysis 702</p> <p>10.19.12 Noise Performance Index Due to Contribution of Modulation Noise 704</p> <p>10.19.13 PM–AM Correlation Coefficient 705</p> <p>10.20 Phase Noise Measurement 706</p> <p>10.20.1 Phase Noise Measurement Techniques 706</p> <p>10.21 Back to Conventional Phase Noise Measurement System (Hewlett-Packard) 724</p> <p>10.22 State-of-the-art 730</p> <p>10.22.1 Analog Signal Path 730</p> <p>10.22.2 Digital Signal Path 732</p> <p>10.22.3 Pulsed Phase Noise Measurement 735</p> <p>10.22.4 Cross-Correlation 736</p> <p>10.23 Instrument Performance 737</p> <p>10.24 Noise in Circuits and Semiconductors [10.74] 738</p> <p>10.25 Validation Circuits 742</p> <p>10.25.1 1000-MHz Ceramic Resonator Oscillator (CRO) 742</p> <p>10.25.2 4100-MHz Oscillator with Transmission Line Resonators 745</p> <p>10.25.3 2000-MHz GaAs FET-Based Oscillator 747</p> <p>10.26 Analytical Approach for Designing Efficient Microwave FET and Bipolar Oscillators (Optimum Power) 751</p> <p>10.26.1 Series Feedback (MESFET) 751</p> <p>10.26.2 Parallel Feedback (MESFET) 758</p> <p>10.26.3 Series Feedback (Bipolar) 760</p> <p>10.26.4 Parallel Feedback (Bipolar) 763</p> <p>10.26.5 An FET Example 764</p> <p>10.26.6 Simulated Results 773</p> <p>10.26.7 Synthesizers 777</p> <p>10.26.8 Self-Oscillating Mixer 777</p> <p>10.27 Introduction 779</p> <p>10.28 Large Signal Noise Analysis 780</p> <p>10.29 Quantifying Phase Noise 789</p> <p>10.30 Summary 791</p> <p>References 791</p> <p>Bibliography 795</p> <p>Problems 806</p> <p><b>11 Frequency Synthesizer 812</b></p> <p>11.1 Introduction 812</p> <p>11.2 Building Block of Synthesizer 814</p> <p>11.2.1 Voltage Controlled Oscillator 814</p> <p>11.2.2 Reference Oscillator 814</p> <p>11.2.3 Frequency Divider 815</p> <p>11.2.4 Phase-Frequency Comparators 817</p> <p>11.2.5 Loop Filters – Filters for Phase Detectors Providing Voltage Output 822</p> <p>11.3 Important Characteristics of Synthesizers 831</p> <p>11.3.1 Frequency Range 831</p> <p>11.3.2 Phase Noise 831</p> <p>11.3.3 Spurious Response 831</p> <p>11.3.4 Transient Behavior of Digital Loops Using Tri-State Phase Detectors 831</p> <p>11.4 Practical Circuits 846</p> <p>11.5 The Fractional-N Principle 846</p> <p>11.6 Spur-Suppression Techniques 849</p> <p>11.7 Digital Direct Frequency Synthesizer 851</p> <p>11.7.1 DDS Advantages 856</p> <p>References 857</p> <p><b>12 Microwave Mixer Design 859</b></p> <p>12.1 Introduction 859</p> <p>12.2 Diode Mixer Theory 866</p> <p>12.3 Single-Diode Mixers 880</p> <p>12.4 Single-Balanced Mixers 890</p> <p>12.5 Double-Balanced Mixers 906</p> <p>12.6 Fet Mixer Theory 931</p> <p>12.7 Balanced Fet Mixers 955</p> <p>12.8 Resistive (Reflective) Fet Mixers 966</p> <p>12.8.1 Switched Mode “ON” and “OFF” Resistance 968</p> <p>12.8.2 Loss Limit of Reflection FETs Device 971</p> <p>12.8.3 Conversion Loss 972</p> <p>12.8.4 Gain Compression and Intercept Point 973</p> <p>12.8.5 Design and Performance Optimization Techniques 974</p> <p>12.9 Special Mixer Circuits 978</p> <p>12.10 Mixer Noise 988</p> <p>12.10.1 Mixer Noise Analysis (MOSFET) 989</p> <p>12.10.2 Noise in Resistive GaAs HEMT Mixers 995</p> <p>References 1001</p> <p>Bibliography 1003</p> <p>Problems 1005</p> <p><b>13 RF Switches and Attenuators 1007</b></p> <p>13.1 <i>PIN </i>Diodes 1007</p> <p>13.2 <i>PIN </i>Diode Switches 1010</p> <p>13.3 <i>PIN </i>Diode Attenuators 1018</p> <p>13.4 FET Switches 1024</p> <p>References 1027</p> <p>Bibliography 1028</p> <p><b>14 Simulation of Microwave Circuits 1029</b></p> <p>14.1 Introduction 1029</p> <p>14.2 Design Types 1031</p> <p>14.2.1 Printed Circuit Board 1031</p> <p>14.2.2 Monolithic Microwave Integrated Circuits 1032</p> <p>14.3 Design Entry 1033</p> <p>14.3.1 Schematic Capture 1033</p> <p>14.3.2 Board and MMIC Layout 1034</p> <p>14.4 Linear Circuit Simulation 1035</p> <p>14.4.1 Small-Signal AC and <i>S</i>-parameter Simulation 1035</p> <p>14.4.2 Example: Microwave Filter, Schematic Based 1039</p> <p>14.5 Nonlinear Simulation 1040</p> <p>14.5.1 Newton’s Method 1040</p> <p>14.5.2 Transistor Modeling 1040</p> <p>14.5.3 Transient Simulation 1041</p> <p>14.5.4 Example: Transient 1044</p> <p>14.5.5 Harmonic Balance Simulation 1045</p> <p>14.5.6 Example: Harmonic Balance, One-tone Amplifier 1050</p> <p>14.5.7 Example: Harmonic Balance, Two-tone Amplifier 1051</p> <p>14.5.8 Envelope Simulation 1052</p> <p>14.5.9 Example: Envelope, Modulated Amplifier 1056</p> <p>14.5.10 Mixing Circuit and Thermal Simulation 1057</p> <p>14.5.11 Example: Electrothermal 1059</p> <p>14.6 Electromagnetic Simulation 1062</p> <p>14.6.1 Method of Moments 1063</p> <p>14.6.2 Finite Element Method 1064</p> <p>14.6.3 Finite Difference Time Domain 1064</p> <p>14.6.4 Performing an EM Simulation 1065</p> <p>14.6.5 Example: Microwave Filter, EM Based 1066</p> <p>14.7 Design for Manufacturing 1067</p> <p>14.7.1 Circuit Optimization 1067</p> <p>14.7.2 Example: Optimization 1069</p> <p>14.7.3 Component Variation 1069</p> <p>14.7.4 Monte Carlo Analysis 1074</p> <p>14.7.5 Example: Monte Carlo Analysis 1075</p> <p>14.7.6 Yield Analysis and Yield Optimization 1078</p> <p>14.8 Oscillator Design and Simulation Example 1079</p> <p>14.8.1 Written by Ludwig Eichinger, Keysight Technologies 1079</p> <p>14.8.2 STW Delay Line 1079</p> <p>14.8.3 Behavioral Simulation 1080</p> <p>14.8.4 Choosing an Amplifier 1081</p> <p>14.8.5 DC Feed Design 1084</p> <p>14.8.6 Wilkinson Divider Design 1085</p> <p>14.8.7 Matching and Linear Oscillator Analysis 1085</p> <p>14.8.8 Optimization of Loop Gain and Phase 1086</p> <p>14.8.9 Nonlinear Oscillator Analysis 1089</p> <p>14.8.10 1/<i>f </i>Noise Characterization 1090</p> <p>14.8.11 Phase Noise Simulation 1096</p> <p>14.8.12 Oscillator Start-up Time 1099</p> <p>14.8.13 Layout EM Cosimulation 1099</p> <p>14.8.14 Oscillator Design Summary 1102</p> <p>14.9 Conclusion 1102</p> <p>References 1102</p> <p>Appendix A Derivations For Unilateral Gain Section 1105</p> <p>Appendix B Vector Representation of Two-Tone Intermodulation Products 1108</p> <p>Appendix C Passive Microwave Elements 1127</p> <p>Index 1148</p>
<p><b>George D. Vendelin</b> is Adjunct Professor at Stanford, Santa Clara, and San Jose State Universities, as well as UC-Berkeley-Extension. He is a Fellow of the IEEE and has over 40 years of microwave engineering design and teaching experience.</p><p><b>Anthony M. Pavio, PhD,</b> is Manager of the Phoenix Design Center for Rockwell Collins. He is a Fellow of the IEEE and was previously Manager at the Integrated RF Ceramics Center for Motorola Labs.</p><p><b>Ulrich L. Rohde</b> is a Professor of Technical Informatics, University of the Joint Armed Forces, in Munich, Germany; a member of the staff of other universities world-wide; partner of Rohde & Schwarz, Munich; and Chairman of the Board of Synergy Microwave Corporation. He is the author of two editions of <i>Microwave and Wireless Synthesizers: Theory and Design</i>.</p><p><b>Dr.-Ing. Matthias Rudolph</b> is Ulrich L. Rohde Professor for RF and Microwave Techniques at Brandenburg University of Technology in Cottbus, Germany and heads the low-noise components lab at the Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik in Berlin.</p>
<p><b>Four leaders in the field of microwave circuit design share their newest insights into the latest aspects of the technology</b></p><p>The third edition of <i>Microwave Circuit Design Using Linear and Nonlinear Techniques</i> delivers an insightful and complete analysis of microwave circuit design, from their intrinsic and circuit properties to circuit design techniques for maximizing performance in communication and radar systems. This new edition retains what remains relevant from previous editions of this celebrated book and adds brand-new content on CMOS technology, GaN, SiC, frequency range, and feedback power amplifiers in the millimeter range region. The third edition contains over 200 pages of new material.</p><p>The distinguished engineers, academics, and authors emphasize the commercial applications in telecommunications and cover all aspects of transistor technology. Software tools for design and microwave circuits are included as an accompaniment to the book. In addition to information about small and large-signal amplifier design and power amplifier design, readers will benefit from the book’s treatment of a wide variety of topics, like:</p><li><bl>An in-depth discussion of the foundations of RF and microwave systems, including Maxwell’s equations, applications of the technology, analog and digital requirements, and elementary definitions</bl></li><li><bl>A treatment of lumped and distributed elements, including a discussion of the parasitic effects on lumped elements</bl></li><li><bl>Descriptions of active devices, including diodes, microwave transistors, heterojunction bipolar transistors, and microwave FET</bl></li><li><bl>Two-port networks, including S-Parameters from SPICE analysis and the derivation of transducer power gain</bl></li><p>Perfect for microwave integrated circuit designers, the third edition of <i>Microwave Circuit Design Using Linear and Nonlinear Techniques</i> also has a place on the bookshelves of electrical engineering researchers and graduate students. It’s comprehensive take on all aspects of transistors by world-renowned experts in the field places this book at the vanguard of microwave circuit design research.</p>

Diese Produkte könnten Sie auch interessieren:

Ground Penetrating Radar
Ground Penetrating Radar
von: Mohammed Serhir, Dominique Lesselier
EPUB ebook
142,99 €
Computational Imaging for Scene Understanding
Computational Imaging for Scene Understanding
von: Takuya Funatomi, Takahiro Okabe
EPUB ebook
142,99 €