Details

Magnetic Resonance Elastography


Magnetic Resonance Elastography

Physical Background and Medical Applications
1. Aufl.

von: Sebastian Hirsch, Jurgen Braun, Ingolf Sack

144,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 18.11.2016
ISBN/EAN: 9783527696048
Sprache: englisch
Anzahl Seiten: 456

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Magnetic resonance elastography (MRE) is a medical imaging technique that combines magnetic resonance imaging (MRI) with mechanical vibrations to generate maps of viscoelastic properties of biological tissue. It serves as a non-invasive tool to detect and quantify mechanical changes in tissue structure, which can be symptoms or causes of various diseases. Clinical and research applications of MRE include staging of liver fibrosis, assessment of tumor stiffness and investigation of neurodegenerative diseases.<br> The first part of this book is dedicated to the physical and technological principles underlying MRE, with an introduction to MRI physics, viscoelasticity theory and classical waves, as well as vibration generation, image acquisition and viscoelastic parameter reconstruction. <br> The second part of the book focuses on clinical applications of MRE to various organs. Each section starts with a discussion of the specific properties of the organ, followed by an extensive overview of clinical and preclinical studies that have been performed, tabulating reference values from published literature. The book is completed by a chapter discussing technical aspects of elastography methods based on ultrasound.
<p>About the Authors xiii</p> <p>Foreword xv</p> <p>Preface xvii</p> <p>Acknowledgments xix</p> <p>Notation xxi</p> <p>List of Symbols xxiii</p> <p>Introduction 1</p> <p><b>Part I Magnetic Resonance Imaging 7</b></p> <p><b>1 Nuclear Magnetic Resonance 9</b></p> <p>1.1 Protons in a Magnetic Field 9</p> <p>1.2 Precession of Magnetization 10</p> <p>1.2.1 Quadrature Detection 11</p> <p>1.3 Relaxation 13</p> <p>1.4 Bloch Equations 14</p> <p>1.5 Echoes 15</p> <p>1.5.1 Spin Echoes 15</p> <p>1.5.2 Gradient Echoes 17</p> <p>1.6 Magnetic Resonance Imaging 17</p> <p>1.6.1 Spatial Encoding 18</p> <p>1.6.1.1 Slice Selection 19</p> <p>1.6.1.2 Phase Encoding 19</p> <p>1.6.1.3 Frequency Encoding 20</p> <p><b>2 Imaging Concepts 23</b></p> <p>2.1 k-Space 23</p> <p>2.2 k-Space Sampling Strategies 26</p> <p>2.2.1 Segmented Image Acquisition 27</p> <p>2.2.1.1 Fast Low-Angle Shot (FLASH) 27</p> <p>2.2.1.2 Balanced Steady-State Free Precession (bSSFP) 28</p> <p>2.2.2 Echo-Planar Imaging (EPI) 30</p> <p>2.2.3 Non-Cartesian Imaging 32</p> <p>2.3 Fast Imaging 33</p> <p>2.3.1 Fast Imaging Strategies 33</p> <p>2.3.2 Partial Fourier Imaging 34</p> <p>2.3.3 Parallel Imaging 35</p> <p>2.3.3.1 Grappa 36</p> <p>2.3.4 Impact of Fast Imaging on SNR and Scan Time 37</p> <p><b>3 Motion Encoding and MRE Sequences 41</b></p> <p>3.1 Motion Encoding 43</p> <p>3.1.1 Gradient Moment Nulling 44</p> <p>3.1.2 Encoding of Time-Harmonic Motion 46</p> <p>3.1.3 Fractional Encoding 50</p> <p>3.2 Intra-Voxel Phase Dispersion 51</p> <p>3.3 Diffusion-Weighted MRE 52</p> <p>3.4 MRE Sequences 53</p> <p>3.4.1 Flash-mre 53</p> <p>3.4.2 bSSFP-MRE 55</p> <p>3.4.3 Epi-mre 57</p> <p><b>Part II Elasticity 61</b></p> <p><b>4 Viscoelastic Theory 63</b></p> <p>4.1 Strain 63</p> <p>4.2 Stress 67</p> <p>4.3 Invariants 68</p> <p>4.4 Hooke’s Law 69</p> <p>4.5 Strain-Energy Function 70</p> <p>4.6 Symmetries 71</p> <p>4.7 Engineering Constants 75</p> <p>4.7.1 Young’s Modulus and Poisson’s Ratio 75</p> <p>4.7.2 Shear Modulus and Lamé’s First Parameter 76</p> <p>4.7.3 Compressibility and Bulk Modulus 77</p> <p>4.7.4 Compliance and Elasticity Tensor for a Transversely Isotropic Material 79</p> <p>4.8 Viscoelastic Models 80</p> <p>4.8.1 Elastic Model: Spring 81</p> <p>4.8.2 Viscous Model: Dashpot 82</p> <p>4.8.3 Combinations of Elastic and Viscous Elements 83</p> <p>4.8.4 Overview of Viscoelastic Models 89</p> <p>4.9 Dynamic Deformation 92</p> <p>4.9.1 Balance of Momentum 92</p> <p>4.9.2 Mechanical Waves 96</p> <p>4.9.2.1 Complex Moduli and Wave Speed 98</p> <p>4.9.3 Navier–Stokes Equation 99</p> <p>4.9.4 Compression Modulus and Oscillating Volumetric Strain 100</p> <p>4.9.5 Elastodynamic Green’s Function 101</p> <p>4.9.6 Boundary Conditions 103</p> <p>4.10 Waves in Anisotropic Media 104</p> <p>4.10.1 The Christoffel Equation 105</p> <p>4.10.2 Waves in a Transversely Isotropic Medium 106</p> <p>4.11 Energy Density and Flux 110</p> <p>4.11.1 Geometric Attenuation 113</p> <p>4.12 Shear Wave Scattering from Interfaces and Inclusions 114</p> <p>4.12.1 Plane Interfaces 115</p> <p>4.12.2 Spatial and Temporal Interfaces 118</p> <p>4.12.3 Wave Diffusion 121</p> <p>4.12.3.1 Green’s Function of Waves and Diffusion Phenomena 125</p> <p>4.12.3.2 Amplitudes and Intensities of Diffusive Waves 126</p> <p><b>5 Poroelasticity 131</b></p> <p>5.1 Navier’s Equation for Biphasic Media 133</p> <p>5.1.1 Pressure Waves in Poroelastic Media 136</p> <p>5.1.2 Shear Waves in Poroelastic Media 140</p> <p>5.2 Poroelastic Signal Equation 142</p> <p><b>Part III Technical Aspects and Data Processing 145</b></p> <p><b>6 MRE Hardware 147</b></p> <p>6.1 MRI Systems 147</p> <p>6.2 Actuators 153</p> <p>6.2.1 Technical Requirements 153</p> <p>6.2.2 Practicality 153</p> <p>6.2.3 Types of Mechanical Transducers 154</p> <p><b>7 MRE Protocols 161</b></p> <p><b>8 Numerical Methods and Postprocessing 165</b></p> <p>8.1 Noise and Denoising in MRE 165</p> <p>8.1.1 Denoising: An Overview 165</p> <p>8.1.2 Least Squares and Polynomial Fitting 167</p> <p>8.1.3 Frequency Domain (k-Space) Filtering 168</p> <p>8.1.3.1 Averaging 168</p> <p>8.1.3.2 LTI Filters in the Fourier Domain 170</p> <p>8.1.3.3 Band-Pass Filtering 172</p> <p>8.1.4 Wavelets and Multi-Resolution Analysis (MRA) 172</p> <p>8.1.5 FFT versus MRA in vivo 174</p> <p>8.1.6 Sparser Approximations and Performance Times 175</p> <p>8.2 Directional Filters 176</p> <p>8.3 Numerical Derivatives 179</p> <p>8.3.1 Matrix Representation of Derivative Operators 182</p> <p>8.3.2 Anderssen Gradients 183</p> <p>8.3.3 Frequency Response of Derivative Operators 186</p> <p>8.4 Finite Differences 187</p> <p><b>9 Phase Unwrapping 191</b></p> <p>9.1 Flynn’s Minimum Discontinuity Algorithm 193</p> <p>9.2 Gradient Unwrapping 195</p> <p>9.3 Laplacian Unwrapping 196</p> <p><b>10 Viscoelastic Parameter Reconstruction Methods 199</b></p> <p>10.1 Discretization and Noise 201</p> <p>10.2 Phase Gradient 204</p> <p>10.3 Algebraic Helmholtz Inversion 205</p> <p>10.3.1 Multiparameter Inversion 207</p> <p>10.3.2 Helmholtz Decomposition 207</p> <p>10.4 Local Frequency Estimation 208</p> <p>10.5 Multifrequency Inversion 210</p> <p>10.5.1 Reconstruction of φ 211</p> <p>10.5.2 Reconstruction of |G ∗ | 213</p> <p>10.6 k-MDEV 214</p> <p>10.7 Finite Element Method 217</p> <p>10.7.1 Weak Formulation of the One-Dimensional Wave Equation 218</p> <p>10.7.2 Discretization of the Problem Domain 219</p> <p>10.7.3 Basis Function in the Discretized Domain 220</p> <p>10.7.4 FE Formulation of the Wave Equation 221</p> <p>10.8 Direct Inversion for a Transverse Isotropic Medium 224</p> <p>10.9 Waveguide Elastography 225</p> <p><b>11 Multicomponent Acquisition 229</b></p> <p><b>12 Ultrasound Elastography 233</b></p> <p>12.1 Strain Imaging (SI) 235</p> <p>12.2 Strain Rate Imaging (SRI) 235</p> <p>12.3 Acoustic Radiation Force Impulse (ARFI) Imaging 235</p> <p>12.4 Vibro-Acoustography (VA) 237</p> <p>12.5 Vibration-Amplitude Sonoelastography (VA Sono) 237</p> <p>12.6 Cardiac Time-Harmonic Elastography (Cardiac THE) 237</p> <p>12.7 Vibration Phase Gradient (PG) Sonoelastography 238</p> <p>12.8 Time-Harmonic Elastography (1D/2D THE) 238</p> <p>12.9 Crawling Waves (CW) Sonoelastography 238</p> <p>12.10 Electromechanical Wave Imaging (EWI) 239</p> <p>12.11 Pulse Wave Imaging (PWI) 239</p> <p>12.12 Transient Elastography (TE) 240</p> <p>12.13 Point Shear Wave Elastography (pSWE) 240</p> <p>12.14 Shear Wave Elasticity Imaging (SWEI) 240</p> <p>12.15 Comb-Push Ultrasound Shear Elastography (CUSE) 241</p> <p>12.16 Supersonic Shear Imaging (SSI) 241</p> <p>12.17 Spatially Modulated Ultrasound Radiation Force (SMURF) 241</p> <p>12.18 Shear Wave Dispersion Ultrasound Vibrometry (SDUV) 241</p> <p>12.19 Harmonic Motion Imaging (HMI) 242</p> <p><b>Part IV Clinical Applications 243</b></p> <p><b>13 MRE of the Heart 245</b></p> <p>13.1 Normal Heart Physiology 245</p> <p>13.1.1 Cardiac Fiber Anatomy 247</p> <p>13.1.2 Wall Shear Modulus versus Cavity Pressure 249</p> <p>13.2 Clinical Motivation for Cardiac MRE 250</p> <p>13.2.1 Systolic Dysfunction versus Diastolic Dysfunction 250</p> <p>13.3 Cardiac Elastography 252</p> <p>13.3.1 Ex vivo SWI 253</p> <p>13.3.2 In vivo SDUV 253</p> <p>13.3.3 In vivo Cardiac MRE in Pigs 254</p> <p>13.3.4 In vivo Cardiac MRE in Humans 256</p> <p>13.3.4.1 Steady-State MRE (WAV-MRE) 256</p> <p>13.3.4.2 Wave Inversion Cardiac MRE 259</p> <p>13.3.5 MRE of the Aorta 260</p> <p><b>14 MRE of the Brain 263</b></p> <p>14.1 General Aspects of Brain MRE 264</p> <p>14.1.1 Objectives 264</p> <p>14.1.2 Determinants of Brain Stiffness 264</p> <p>14.1.3 Challenges for Cerebral MRE 264</p> <p>14.2 Technical Aspects of Brain MRE 265</p> <p>14.2.1 Clinical Setup for Cerebral MRE 265</p> <p>14.2.2 Choice of Vibration Frequency 266</p> <p>14.2.3 Driver-Free Cerebral MRE 269</p> <p>14.2.4 MRE in the Mouse Brain 270</p> <p>14.3 Findings 271</p> <p>14.3.1 Brain Stiffness Changes with Age 272</p> <p>14.3.2 Male Brains Are Softer than Female Brains 273</p> <p>14.3.3 Regional Variation in Brain Stiffness 274</p> <p>14.3.4 Anisotropic Properties of Brain Tissue 274</p> <p>14.3.5 The in vivo Brain Is Compressible 276</p> <p>14.3.6 Preliminary Findings of MRE with Functional Activation 277</p> <p>14.3.7 Demyelination and Inflammation Reduce Brain Stiffness 277</p> <p>14.3.8 Neurodegeneration Reduces Brain Stiffness 279</p> <p>14.3.9 The Number of Neurons Correlates with Brain Stiffness 280</p> <p>14.3.10 Preliminary Conclusions on MRE of the Brain 280</p> <p><b>15 MRE of Abdomen, Pelvis, and Intervertebral Disc 283</b></p> <p>15.1 Liver 283</p> <p>15.1.1 Epidemiology of Chronic Liver Diseases 286</p> <p>15.1.2 Liver Fibrosis 287</p> <p>15.1.2.1 Pathogenesis of Liver Fibrosis 289</p> <p>15.1.2.2 Staging of Liver Fibrosis 291</p> <p>15.1.2.3 Noninvasive Screening Methods for Liver Fibrosis 292</p> <p>15.1.2.4 Reversibility of Liver Fibrosis 293</p> <p>15.1.2.5 Biophysical Signs of Liver Fibrosis 293</p> <p>15.1.3 MRE of the Liver 294</p> <p>15.1.3.1 MRE in Animal Models of Hepatic Fibrosis and Liver Tissue Samples 294</p> <p>15.1.3.2 Early Clinical Studies and Further Developments 295</p> <p>15.1.3.3 MRE of Nonalcoholic Fatty Liver Disease 303</p> <p>15.1.3.4 Comparison with other Noninvasive Imaging and Serum Biomarkers 304</p> <p>15.1.3.5 MRE of the Liver for Assessing Portal Hypertension 307</p> <p>15.1.3.6 MRE in Liver Grafts 309</p> <p>15.1.3.7 Confounders 310</p> <p>15.2 Spleen 311</p> <p>15.2.1 MRE of the Spleen 311</p> <p>15.3 Pancreas 314</p> <p>15.3.1 MRE of the Pancreas 315</p> <p>15.4 Kidneys 315</p> <p>15.4.1 MRE of the Kidneys 316</p> <p>15.5 Uterus 318</p> <p>15.5.1 MRE of the Uterus 318</p> <p>15.6 Prostate 319</p> <p>15.6.1 MRE of the Prostate 320</p> <p>15.7 Intervertebral Disc 321</p> <p>15.7.1 MRE of the Intervertebral Disc 322</p> <p><b>16 MRE of Skeletal Muscle 325</b></p> <p>16.1 In vivo MRE of Healthy Muscles 326</p> <p>16.2 MRE in Muscle Diseases 330</p> <p><b>17 Elastography of Tumors 333</b></p> <p>17.1 Micromechanical Properties of Tumors 333</p> <p>17.2 Ultrasound Elastography of Tumors 336</p> <p>17.2.1 Ultrasound Elastography in Breast Tumors 337</p> <p>17.2.2 Ultrasound Elastography in Prostate Cancer 338</p> <p>17.3 MRE of Tumors 339</p> <p>17.3.1 MRE of Tumors in the Mouse 340</p> <p>17.3.2 MRE in Liver Tumors 342</p> <p>17.3.3 MRE of Prostate Cancer 344</p> <p>17.3.3.1 Ex Vivo Studies 344</p> <p>17.3.3.2 In Vivo Studies 345</p> <p>17.3.4 MRE of Breast Tumors 345</p> <p>17.3.4.1 In Vivo MRE of Breast Tumors 346</p> <p>17.3.5 MRE of Intracranial Tumors 347</p> <p><b>Part V Outlook 351</b></p> <p>Dimensionality 351</p> <p>Sparsity 352</p> <p>Heterogeneity 353</p> <p>Reproducibility 353</p> <p><b>A Simulating the Bloch Equations 355</b></p> <p><b>B Proof that Eq. (3.8) Is Sinusoidal 357</b></p> <p><b>C Proof for Eq. (4.1) 359</b></p> <p><b>D Wave Intensity Distributions 361</b></p> <p>D. 1 Calculation of Intensity Probabilities 361</p> <p>D. 2 Point Source in 3D 362</p> <p>D. 3 Classical Diffusion 363</p> <p>D. 4 Damped Plane Wave 365</p> <p>References 367</p> <p>Index 417</p>
Ingolf Sack is professor for Experimental Radiology and Elastography at Charite - Universitatsmedizin Berlin, Germany. He received a PhD in Chemistry at Freie Universitat Berlin, Germany, for the development of methods in NMR spectroscopy. He worked at the Weizmann Institute in Rehovot, Israel, and at the Sunnybrook Hospital Toronto, Canada. Since 2003 he leads an interdisciplinary team of physicists, engineers, chemists and physicians which has pioneered pivotal developments in time-harmonic elastography of both MRI and ultrasound for many medical applications.<br> <br> Sebastian Hirsch is a postdoctoral fellow in the Department of Radiology at the Charite - Universitatsmedizin Berlin, Germany. After studying physics at the University of Mainz, Germany, he joined Charite, where he works on pressure-sensitive MRE and the development of data acquisition strategies.<br> <br> Jurgen Braun is an assistant professor at the Charite - Universitatsmedizin Berlin, Germany. He received his PhD degree in physical chemistry from Albert-Ludwigs-University in Freiburg, Germany, for the elucidation of reaction kinetics with liquid and solid state NMR. He possesses long standing professional experience in elastography, medical engineering, and image processing.
Magnetic resonance elastography (MRE) is a medical imaging technique that combines magnetic resonance imaging (MRI) with mechanical vibrations to generate maps of viscoelastic properties of biological tissue. It serves as a non-invasive tool to detect and quantify mechanical changes in tissue structure, which can be symptoms or causes of various diseases. Clinical and research applications of MRE include staging of liver fibrosis, assessment of tumor stiffness and investigation of neurodegenerative diseases.<br> The first part of this book is dedicated to the physical and technological principles underlying MRE, with an introduction to MRI physics, viscoelasticity theory and classical waves, as well as vibration generation, image acquisition and viscoelastic parameter reconstruction. <br> The second part of the book focuses on clinical applications of MRE to various organs. Each section starts with a discussion of the specific properties of the organ, followed by an extensive overview of clinical and preclinical studies that have been performed, tabulating reference values from published literature. The book is completed by a chapter discussing technical aspects of elastography methods based on ultrasound.

Diese Produkte könnten Sie auch interessieren:

Solid-State Metal Additive Manufacturing
Solid-State Metal Additive Manufacturing
von: Hang Z. Yu, Nihan Tuncer, Zhili Feng
EPUB ebook
133,99 €
Solid-State Metal Additive Manufacturing
Solid-State Metal Additive Manufacturing
von: Hang Z. Yu, Nihan Tuncer, Zhili Feng
PDF ebook
133,99 €
Human and Ecological Risk Assessment
Human and Ecological Risk Assessment
von: Dennis J. Paustenbach
EPUB ebook
341,99 €