Details

Handbook of Water Harvesting and Conservation


Handbook of Water Harvesting and Conservation

Basic Concepts and Fundamentals
New York Academy of Sciences 1. Aufl.

von: Saeid Eslamian, Faezeh Eslamian

181,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 21.12.2020
ISBN/EAN: 9781119478928
Sprache: englisch
Anzahl Seiten: 528

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Water harvesting is gaining more and more recognition as a sustainable and resilient water supply options. It is economically viable, socially compatible and environmentally friendly. Water harvesting has proven to be a robust solution to overcome or reduce water shortages all over the world. It is important to understand how to apply this practice in a sustainable and effective way to make full use of its potential in a world increasingly threatened by water scarcity.</p> <p>The <i>Handbook of Water Harvesting and Conservation: Basic Concepts and Fundamentals</i> is the most comprehensive, up-to-date and applied handbook on water harvesting and conservation yet published. The book’s 30 chapters -- written by 84 outstanding international experts from approximately 20 selected countries faced by drought -- explore, critique and develop concepts and systems for water harvesting. The editors bring together many perspectives into a synthesis that is both academically based and practical in its potential applications.</p> <p>The <i>Handbook of Water Harvesting and Conservation: Basic Concepts and Fundamentals</i> is an important tool for education, research and technical works in the areas of soil, water and watershed management and is highly useful for drought strategy planning, flood management and developing techniques to adapt to climate change in urban, agricultural, forest and rangeland areas.</p>
<p>List of Contributors xxi</p> <p>About the Editors xxvii</p> <p><b>Part A Concepts and Standards for a Secure Water Harvesting </b><b>1</b></p> <p><b>1 Concept and Technology of Rainwater Harvesting </b><b>3<br /></b><i>Fayez Abdulla, Cealeen Abdulla, and Saeid Eslamian</i></p> <p>1.1 Introduction 3</p> <p>1.2 Concept of Rainwater Harvesting 4</p> <p>1.3 Technologies of Rainwater Harvesting 5</p> <p>1.3.1 Micro-Catchment Systems 6</p> <p>1.3.1.1 Rooftop System 6</p> <p>1.3.1.2 On-Farm Systems 7</p> <p>1.3.2 Macro-Catchment Systems 7</p> <p>1.4 Advantages and Disadvantages of Rainwater Harvesting 8</p> <p>1.4.1 Advantages of Roof Rainwater Harvesting (RRWH) 8</p> <p>1.4.2 Disadvantages of RRWH 10</p> <p>1.5 Feasibility of Rainwater Harvesting across Different Climatic Zones 10</p> <p>1.5.1 Physical Feasibility 10</p> <p>1.5.2 Technical Aspects 10</p> <p>1.5.3 Social Aspects 11</p> <p>1.5.4 Financial Aspects 11</p> <p>1.6 Roof Rainwater Harvesting System Components 11</p> <p>1.6.1 Catchment Area 11</p> <p>1.6.2 Conveyance System 12</p> <p>1.6.3 Storage Tank 12</p> <p>1.6.4 First Flush 13</p> <p>1.7 Calculation of Potential HarvestedWater 13</p> <p>1.8 Water Quality and its Health and Environmental Impacts 14</p> <p>1.9 System Operation and Maintenance 14</p> <p>1.10 Conclusion 15</p> <p>References 15</p> <p><b>2 Rainwater Harvesting: Recent Developments and Contemporary Measures </b><b>17<br /></b><i>Aline Pires Veról, Marcelo Gomes Miguez, Elaine Garrido Vazquez, Fernanda Rocha Thomaz, Bruna Peres Battemarco, and Assed Naked Haddad</i></p> <p>2.1 Introduction 17</p> <p>2.2 Water Resource Management 18</p> <p>2.2.1 Water Supply 19</p> <p>2.2.2 Water Demands 19</p> <p>2.2.3 Water Scarcity 19</p> <p>2.2.4 Regulatory Framework 21</p> <p>2.2.5 Recent Developments 21</p> <p>2.2.5.1 Water-Energy Nexus 22</p> <p>2.2.5.2 Net-Zero Water Buildings 24</p> <p>2.3 Water Management at the Building Scale 25</p> <p>2.3.1 Design of a Rainwater Harvesting System 26</p> <p>2.3.1.1 Collection Surface (or Roof Surface) 26</p> <p>2.3.1.2 Gutters and Pipes 26</p> <p>2.3.1.3 Storage Tanks (Reservoirs) 27</p> <p>2.3.1.4 Rainwater Treatment Systems 32</p> <p>2.3.1.5 Rainwater Pumping Station 33</p> <p>2.3.1.6 Water Supply System (Water Pipes) 33</p> <p>2.3.2 Source Control Systems 33</p> <p>2.4 Analysis of Payback of Rainwater Harvesting Systems 34</p> <p>2.5 Conclusion 35</p> <p>Acknowledgment 35</p> <p>References 36</p> <p><b>3 Standards for Rainwater Catchment Design </b><b>39<br /></b><i>Sisuru Sendanayake and Saeid Eslamian</i></p> <p>3.1 Introduction 39</p> <p>3.2 Catchment Surface 40</p> <p>3.2.1 Collection Efficiency 41</p> <p>3.2.2 Pollutants on the Catchment Surface 41</p> <p>3.3 Conveyance System 42</p> <p>3.3.1 Filtering Devices in RWH Systems 43</p> <p>3.4 Storage Tank 44</p> <p>3.4.1 Sizing of the Storage Tank 44</p> <p>3.4.1.1 General Methods of Determining the Tank Capacities of RTRWHS 44</p> <p>3.4.1.2 Sizing Based on Supply (Mass Balance Method or Rainfall Mass Curve Analysis) 44</p> <p>3.4.1.3 Sizing Based on Computer Models 45</p> <p>3.4.1.4 Sizing Based on Design Charts 45</p> <p>3.4.2 Advanced Methods of Determining Optimum Tank Capacities of RTRWH Systems 45</p> <p>3.4.2.1 Critical Period Model 45</p> <p>3.4.2.2 Moran Model 45</p> <p>3.4.2.3 Behavioral Models 45</p> <p>3.4.3 Investigating the Performance of RTRWH System Using the Behavioral Model 45</p> <p>3.4.3.1 Yield after Spillage (YAS) Operating Model 46</p> <p>3.4.3.2 Predicting the Performance of the RTRWH System Using the Behavioral Model 46</p> <p>3.4.3.3 Generic Curves for System Performance of a RTRWH System 47</p> <p>3.4.3.4 Sample Calculation for Sizing Storage of a RWH System 48</p> <p>3.4.3.5 Use of Reference Maps to Find the Effective Combinations of Roof Area and Storage Capacity 49</p> <p>3.4.4 Positioning of the Storage Tank 49</p> <p>3.4.5 Cascading Multi Tank Model 51</p> <p>3.4.6 Tank Materials and Life Cycle Energy (LCE) of Tanks 53</p> <p>3.5 Pre-treatment of Roof Collection 53</p> <p>3.6 Distribution System and Related Regulations 54</p> <p>3.7 Conclusion 54</p> <p>References 55</p> <p><b>4 Water Security Using Rainwater Harvesting </b><b>57<br /></b><i>Adebayo Eludoyin, Oyenike Eludoyin, Tanimola Martins, Mayowa Oyinloye, and Saeid Eslamian</i></p> <p>4.1 Introduction 57</p> <p>4.2 Concept of Rainwater Harvesting 57</p> <p>4.3 Rainwater Collection Systems 58</p> <p>4.4 Rainwater Storage 61</p> <p>4.5 Importance of Rainwater Harvesting 61</p> <p>4.6 Quality Assessment of Harvested Rainwater 64</p> <p>4.7 Problems Associated with Rainwater Harvesting 64</p> <p>4.8 Conclusion 65</p> <p>References 65</p> <p><b>Part B Water Harvesting Resources </b><b>69</b></p> <p><b>5 Single-Family Home and Building Rainwater Harvesting Systems </b><b>71<br /></b><i>Duygu Erten</i></p> <p>5.1 Introduction 71</p> <p>5.2 Historical Development of RWH and Utilization 71</p> <p>5.3 Pros and Cons of RWH Systems 72</p> <p>5.3.1 Economics of RWH 73</p> <p>5.3.2 Cisterns as Flood Mitigation/Control Systems 74</p> <p>5.3.3 Types of RWH Systems 74</p> <p>5.3.4 Water Harvesting:Water Collection Source 74</p> <p>5.3.5 RWH System: System Components 74</p> <p>5.3.6 Rooftop Material 75</p> <p>5.3.7 RoofWashers 75</p> <p>5.3.8 Maintenance 75</p> <p>5.3.9 Smart Rainwater Systems 76</p> <p>5.3.10 RWH Systems with Solar Electric Pump 77</p> <p>5.3.11 Water Harvesting from Air 77</p> <p>5.4 Current Practices Around theWorld 78</p> <p>5.5 Health Risks of Roof-Collected Rainwater 78</p> <p>5.6 Guides, Policy, and Incentives 79</p> <p>5.7 Green Building Certification Systems and RWH 82</p> <p>5.7.1 Code for Sustainable Homes/BREEAM Support/Points Awarded 84</p> <p>5.8 Conclusion 84</p> <p>References 85</p> <p><b>6 Water Harvesting in Farmlands </b><b>87<br /></b><i>Elena Bresci and Giulio Castelli</i></p> <p>6.1 Introduction 87</p> <p>6.2 Water Harvesting: Definitions 87</p> <p>6.3 Floodwater Harvesting in Farmlands 88</p> <p>6.3.1 Case Study: Spate Irrigation Systems in Raya Valley 90</p> <p>6.3.1.1 Modernization of Spate Irrigation in Raya Valley 90</p> <p>6.3.1.2 Water Rights and Regulation of Raya Valley Spate Irrigation Systems 91</p> <p>6.4 Macro-CatchmentWater Harvesting in Farmlands 91</p> <p>6.4.1 Case Study: Sand Dams in Kenya 91</p> <p>6.4.1.1 GIS and Local Knowledge for Selecting Best Sites for Sand Dam Constructions in Kenya 92</p> <p>6.5 Micro-CatchmentWater Harvesting in Farmlands 94</p> <p>6.5.1 Case Study: Multiple Micro Catchment Systems in Ethiopia 94</p> <p>6.6 RooftopWater Harvesting in Farmlands 95</p> <p>6.6.1 Case Study: RooftopWater Harvesting in Guatemala 95</p> <p>6.7 Water Harvesting and Fertilization 96</p> <p>6.8 Conclusions and Future Perspectives 96</p> <p>References 97</p> <p><b>7 Rainwater Harvesting for Livestock </b><b>101<br /></b><i>Billy Kniffen</i></p> <p>7.1 Introduction 101</p> <p>7.2 Rainfall Harvesting on the Land 101</p> <p>7.3 AnimalWater Requirements 102</p> <p>7.4 Harvested Rainfall as a Source for Livestock 103</p> <p>7.5 Requirements for Harvesting Rainwater for Livestock 104</p> <p>7.6 Distribution ofWater for Livestock 107</p> <p>7.7 Rainwater System Maintenance 107</p> <p>7.8 Conclusion 107</p> <p>References 108</p> <p><b>8 Road Water Harvesting </b><b>109<br /></b><i>Negin Sadeghi and Saeid Eslamian</i></p> <p>8.1 Introduction 109</p> <p>8.2 Water Harvesting Systems and Their Characteristics 110</p> <p>8.2.1 Rainwater Harvest System 111</p> <p>8.2.2 Necessity and Advantages of WHS 113</p> <p>8.2.3 Types ofWater Harvesting Systems 113</p> <p>8.3 RoadWater Harvesting 113</p> <p>8.3.1 Rolling Dips 117</p> <p>8.3.2 Water Bars 117</p> <p>8.3.3 Side Drains 118</p> <p>8.3.4 Miter 118</p> <p>8.3.5 Culverts 118</p> <p>8.3.6 Gully Prevention and Reclamation 118</p> <p>8.3.6.1 Terrain 119</p> <p>8.3.6.2 Climate 119</p> <p>8.3.6.3 Soils 119</p> <p>8.3.7 Inclusive Planning/Water-Friendly Road Design 120</p> <p>8.3.8 Road WHS and Planting 122</p> <p>8.3.8.1 Site Selection 123</p> <p>8.4 Conclusion 123</p> <p>References 124</p> <p><b>Part C Hydroinformatic and Water Harvesting </b><b>127</b></p> <p><b>9 Application of RS and GIS for Locating Rainwater Harvesting Structure Systems </b><b>129<br /></b><i>Dhruvesh Patel, Dipak R. Samal, Cristina Prieto, and Saeid Eslamian</i></p> <p>9.1 Introduction 129</p> <p>9.2 Experimental Site 131</p> <p>9.3 Methodology 131</p> <p>9.3.1 Drainage Network 131</p> <p>9.3.2 Digital Elevation Model and Slope 131</p> <p>9.3.3 Soil Map 131</p> <p>9.3.4 Land Use and Land Cover (LULC) 132</p> <p>9.3.5 Morphometric Analysis 133</p> <p>9.3.6 Decision Rules for Site Selection ofWater Harvesting Structures 133</p> <p>9.4 Results and Discussions 137</p> <p>9.4.1 Basic Parameters 137</p> <p>9.4.1.1 Area (A) and Perimeter (P) 137</p> <p>9.4.1.2 Total Length of Streams (L) 137</p> <p>9.4.1.3 Stream Order (u) 137</p> <p>9.4.1.4 Basin Length (L<sub>b</sub>) 137</p> <p>9.4.2 Linear Parameters 138</p> <p>9.4.2.1 Bifurcation Ration (R<sub>b</sub>) 138</p> <p>9.4.2.2 Drainage Density (D<sub>d</sub>) 139</p> <p>9.4.2.3 Stream Frequency (F<sub>u</sub>) 139</p> <p>9.4.2.4 Texture Ratio (T) 139</p> <p>9.4.2.5 Length of Overland Flow (L<sub>o</sub>) 139</p> <p>9.4.3 Shape Parameters 139</p> <p>9.4.3.1 Form Factor (R<sub>f</sub>) 139</p> <p>9.4.3.2 Shape Factor (B<sub>s</sub>) 140</p> <p>9.4.3.3 Elongation Ratio (R<sub>e</sub>) 140</p> <p>9.4.3.4 Compactness Coefficient (C<sub>c</sub>) 140</p> <p>9.4.3.5 Circularity Ratio (Rc) 140</p> <p>9.4.4 Compound Factor and Ranking 140</p> <p>9.4.5 Positioning a Water Harvesting Structure 140</p> <p>9.5 Conclusion 141</p> <p>References 142</p> <p><b>10 Information Technology in Water Harvesting </b><b>145<br /></b><i>S. Sreenath Kashyap, M.V.V. Prasad Kantipudi, Saeid Eslamian, Maryam Ghashghaie, Nicolas R. Dalezios, Ioannis Faraslis, and Kaveh Ostad-Ali-Askari</i></p> <p>10.1 Introduction 145</p> <p>10.2 Water Harvesting Methods 145</p> <p>10.2.1 Basin Method 145</p> <p>10.2.2 Stream Channel Method 145</p> <p>10.2.3 Ditch and Furrow Method 145</p> <p>10.2.4 Flooding Method 146</p> <p>10.2.5 Irrigation Method 146</p> <p>10.2.6 Pit Method 146</p> <p>10.2.7 RechargeWell Method 147</p> <p>10.3 The Internet of Things (IoT) 147</p> <p>10.3.1 Applications of the IoT inWater Harvesting 147</p> <p>10.3.1.1 Estimation of the Soil Moisture Content 147</p> <p>10.3.1.2 Determining the Quality of Groundwater 147</p> <p>10.3.1.3 Rate of Infiltration in the Soil 148</p> <p>10.3.1.4 Delineation of Aquifer Boundaries and Estimation of Storability of Aquifer 148</p> <p>10.3.1.5 Depth of Aquifer from the Surface of the Earth 148</p> <p>10.3.1.6 Identification of Sites for Artificial Recharge Structures 148</p> <p>10.4 Assessing the Available Subsurface Resources Using the IoT 148</p> <p>10.5 The IoT Devices for Efficient Agricultural/Irrigation Usage 150</p> <p>10.6 Conclusions 151</p> <p>References 151</p> <p><b>11 Global Satellite-Based Precipitation Products </b><b>153<br /></b><i>Zhong Liu, Dana Ostrenga, Andrey Savtchenko, William Teng, Bruce Vollmer, Jennifer Wei, and David Meyer</i></p> <p>11.1 Introduction 153</p> <p>11.2 Precipitation Measurements from Space 154</p> <p>11.3 Overview of NASA Satellite-Based Global Precipitation Products and Ancillary Products at GES DISC 155</p> <p>11.3.1 TRMM and GPM Missions 155</p> <p>11.3.2 Multi-Satellite and Multi-Sensor Merged Global Precipitation Products 156</p> <p>11.3.3 Global and Regional Land Data Assimilation Products 157</p> <p>11.3.4 Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) Products 158</p> <p>11.3.5 Ancillary Products at GES DISC 158</p> <p>11.4 Data Services 159</p> <p>11.4.1 Point-and-Click Online Tools 159</p> <p>11.4.2 Data Rod Services 160</p> <p>11.4.3 Subsetting and Format Conversion Services 161</p> <p>11.4.4 OtherWeb Data Services and Information 161</p> <p>11.5 Examples 163</p> <p>11.5.1 Maps of Seasonal Averages of Precipitation 163</p> <p>11.5.2 Time Series Analysis of Precipitation inWatersheds 164</p> <p>11.5.3 Changes in Precipitation Patterns 165</p> <p>11.6 Conclusion 171</p> <p>Acknowledgments 172</p> <p>References 172</p> <p><b>12 Risk Analysis of Water Harvesting Systems </b><b>177<br /></b><i>Maria Do Céu Almeida, Nelson Carriço, João Santos and Saeid Eslamian</i></p> <p>12.1 Introduction 177</p> <p>12.2 Concepts and Terminology 177</p> <p>12.3 General Approaches to Risk Management Applicable to RWHS 177</p> <p>12.4 Supporting Risk Management for RWHS 181</p> <p>12.5 Hazards and Exposure Modes 182</p> <p>12.6 Rainwater Collection Reliability asWater Source 183</p> <p>12.7 Specific Risk Treatment Actions 185</p> <p>12.8 Process Control and Monitoring 186</p> <p>12.9 Conclusion 187</p> <p>References 187</p> <p><b>Part D Hydrological Aspects of Water Harvesting </b><b>191</b></p> <p><b>13 Return Period Determination for Rainwater Harvesting System Design </b><b>193<br /></b><i>Sandeep Samantaray, Dillip K. Ghose, and Saeid Eslamian</i></p> <p>13.1 Introduction 193</p> <p>13.2 Study Area 194</p> <p>13.2.1 Water Level Fluctuation 195</p> <p>13.3 Overview of Rainwater Harvesting 197</p> <p>13.3.1 Different Types ofWater Harvesting Techniques 197</p> <p>13.3.1.1 RooftopWater Harvesting (RTWH) 197</p> <p>13.3.1.2 Micro-Catchment System of Rainwater Harvesting (MiCSRWH) 197</p> <p>13.3.1.3 Macro-Catchment System of Rainwater Harvesting (MaCSRWH) 197</p> <p>13.3.1.4 Floodwater Harvesting (FWH) 197</p> <p>13.3.1.5 Storage Structure Systems 197</p> <p>13.3.1.6 Spreading ofWater 198</p> <p>13.4 Methodology 198</p> <p>13.4.1 Evaluation of Return Period 198</p> <p>13.4.2 Design ofWater Harvesting Structures 198</p> <p>13.4.2.1 Design Approach 198</p> <p>13.4.2.2 Estimation of Runoff Rate 198</p> <p>13.4.2.3 Estimation of Runoff Volume 198</p> <p>13.4.2.4 Runoff Coefficients 199</p> <p>13.4.2.5 Normal Distribution Method 199</p> <p>13.4.2.6 Gumbel Distribution Method 199</p> <p>13.4.2.7 Extreme Value Type-I Distribution 200</p> <p>13.4.2.8 Log Pearson Type-III Distribution 200</p> <p>13.5 Results and Discussions 201</p> <p>13.6 Conclusions 203</p> <p>References 203</p> <p><b>14 Rainwater Harvesting Impact on Urban Groundwater </b><b>207<br /></b><i>A. Jebamalar, R. Sudharsanan, G. Ravikumar, and Saeid Eslamian</i></p> <p>14.1 Introduction 207</p> <p>14.2 State of the Art 208</p> <p>14.3 Study Area and Data Collection 209</p> <p>14.4 Methodology 213</p> <p>14.5 Temporal Analysis of Groundwater Level 214</p> <p>14.6 Spatial Analysis of Groundwater Table 215</p> <p>14.7 Impact of RWH on Groundwater Recharge 215</p> <p>14.8 Model Simulations for Impact of RWH Systems 217</p> <p>14.9 Model Predictions for the Future 218</p> <p>14.10 Conclusion 222</p> <p>Acknowledgement 223</p> <p>References 223</p> <p><b>15 Effects of Water Harvesting Techniques on Sedimentation </b><b>225<br /></b><i>Siavash Fasihi, and Saeid Eslamian</i></p> <p>15.1 Introduction 225</p> <p>15.1.1 How to Incorporate WHTs in Models 226</p> <p>15.2 Qualitative Effects and Data Collection 226</p> <p>15.2.1 Measurements and Data Input 227</p> <p>15.3 Sedimentation in Small Check Dams 228</p> <p>15.4 Revised Universal Soil Loss Equation (RUSLE) 229</p> <p>15.4.1 Abilities and Limitations of RUSLE 234</p> <p>15.5 Limburg Soil Erosion Model (LISEM) 235</p> <p>15.5.1 Model Implementation 235</p> <p>15.5.2 Calibration and Modification of p-Factor 236</p> <p>15.5.3 Assessing Effects ofWHTs on Sedimentation Using LISEM 237</p> <p>15.6 Conclusion 238</p> <p>References 238</p> <p><b>Part E Hydrometeorological Water Harvesting </b><b>243</b></p> <p><b>16 Principles and Applications of Atmospheric Water Harvesting </b><b>245<br /></b><i>Mousa Maleki, Saeid Eslamian, and Boutaghane Hamouda</i></p> <p>16.1 Introduction 245</p> <p>16.1.1 UnconventionalWater Resources 245</p> <p>16.2 AtmosphericWater Harvesting Necessity 245</p> <p>16.3 Methods of AtmosphericWater Harvesting 246</p> <p>16.3.1 Vapor Condensing 246</p> <p>16.3.2 Active Cooling of the Ambient Air 247</p> <p>16.3.3 Fog Harvesting – Age-Old Practices that StillWork 247</p> <p>16.4 Energy Requirements of AMH andWater Production Costs 247</p> <p>16.5 Atmospheric Vapor Harvesting Systems 248</p> <p>16.5.1 Water Harvesting from Air with Metal-Organic Frameworks Powered by Natural Sunlight 248</p> <p>16.5.2 Atmospheric Vapor Harvesting Adsorption Materials 251</p> <p>16.5.3 Applications of Superhydrophilic and Superhydrophobic Materials 252</p> <p>16.5.4 Vapor Compression Refrigerating System 252</p> <p>16.5.4.1 Water Generation System 252</p> <p>16.5.4.2 Operation ofWater Generation Systems 253</p> <p>16.5.4.3 Water Treatment System 253</p> <p>16.5.4.4 Water Formation in a Humid Atmosphere 254</p> <p>16.5.4.5 Computations and Estimations 254</p> <p>16.5.4.6 Cooling Condensation Process 254</p> <p>16.5.4.7 Compressor 255</p> <p>16.5.4.8 Dew Point 255</p> <p>16.5.4.9 Relative Humidity 255</p> <p>16.5.4.10 Comparison Between Various Compression Systems 255</p> <p>16.6 Conclusion 256</p> <p>References 257</p> <p><b>17 Dew Harvesting on High Emissive Natural and Artificial Passive Surfaces </b><b>261<br /></b><i>Jose Francisco Maestre-Valero, Bernardo Martin-Gorriz, Victoriano Martínez-Alvarez, and Saeid Eslamian</i></p> <p>17.1 Introduction 261</p> <p>17.2 Passive Surfaces for the Case Studies 262</p> <p>17.2.1 Optical Properties 262</p> <p>17.2.2 Passive Radiative Condensers and Foils 263</p> <p>17.2.3 Experimental Pan 263</p> <p>17.2.4 Agricultural Pond 263</p> <p>17.3 Data Collection 264</p> <p>17.3.1 Climate Measurements 264</p> <p>17.3.2 Dew Measurements 264</p> <p>17.3.2.1 RDCs 264</p> <p>17.3.2.2 Experimental Pan 264</p> <p>17.3.2.3 Agricultural Pond 265</p> <p>17.3.3 Statistical Analysis 265</p> <p>17.4 Case Studies for Dew Collection 265</p> <p>17.4.1 Dew Collection on Passive Radiative Condensers 265</p> <p>17.4.2 Dew Collection on the Experimental Pan 266</p> <p>17.4.3 Dew Collection on an Agricultural Pond 267</p> <p>17.5 Dew Modeling 267</p> <p>17.5.1 Correlation with Climatic Variables 267</p> <p>17.5.2 Mass Transfer Equation 268</p> <p>17.6 Conclusion 270</p> <p>Acknowledgments 271</p> <p>References 271</p> <p><b>18 Atmospheric Water Harvesting Using Waste Energy from Landfills and Oilfields </b><b>273<br /></b><i>Enakshi Wikramanayake, Onur Ozkan, Aritra Kar, and Vaibhav Bahadur</i></p> <p>18.1 Introduction 273</p> <p>18.2 Refrigeration-Based AtmosphericWater Harvesting Systems 275</p> <p>18.3 ModelingWaste Natural Gas-Based AtmosphericWater Harvesting 276</p> <p>18.4 Landfill Gas-Based AtmosphericWater Harvesting 277</p> <p>18.4.1 Modeling LFG-Based AWH in the Barnett Shale 277</p> <p>18.4.2 Benefits of LFG-Based AWH for the Barnett Shale 278</p> <p>18.4.3 Techno-Economic Analysis of LFG-Powered AWH 279</p> <p>18.4.4 Environmental Benefits of LFG-Powered AWH 282</p> <p>18.5 Oilfield Gas-Based AtmosphericWater Harvesting 283</p> <p>18.6 Sensitivity of theWater Harvest to Various Parameters 284</p> <p>18.7 Comparison of AWH to Other Techniques for ProducingWater 285</p> <p>18.8 Perspectives on AtmosphericWater Harvesting 285</p> <p>18.9 Conclusions 286</p> <p>Acknowledgements 286</p> <p>References 286</p> <p><b>Part F Environmental Aspects of Water Harvesting </b><b>289</b></p> <p><b>19 Treatment Techniques in Water Harvesting </b><b>291<br /></b><i>Brandon Reyneke, Monique Waso, Thando Ndlovu, Tanya Clements, Sehaam Khan, and Wesaal Khan</i></p> <p>19.1 Introduction 291</p> <p>19.2 Pretreatment of Harvested Rainwater: Prevention of Debris Entry and Sedimentation 292</p> <p>19.3 Chemical Disinfection 293</p> <p>19.3.1 Chlorination 293</p> <p>19.3.2 Non-Chlorine Disinfectants 294</p> <p>19.4 Physical Disinfection 295</p> <p>19.4.1 Filtration Techniques 295</p> <p>19.4.2 SODIS/UV Treatment 296</p> <p>19.4.3 Thermal Disinfection 297</p> <p>19.5 Biological Treatment 298</p> <p>19.5.1 Slow-Sand and Granular Activated Carbon Filters 298</p> <p>19.5.2 Coagulation and Bioflocculants 299</p> <p>19.5.3 Bacteriophages and Bacteriophage Proteins 300</p> <p>19.6 Conclusion 300</p> <p>References 301</p> <p><b>20 Water Recycling from Palm Oil Mill Effluent </b><b>307<br /></b><i>Hossein Farraji, Irvan Dahlan, and Saeid Eslamian</i></p> <p>20.1 Introduction 307</p> <p>20.2 Problem Statement 307</p> <p>20.3 Palm Oil Production 308</p> <p>20.4 POME as an Agro-IndustryWastewater 308</p> <p>20.5 Characteristics of POME 308</p> <p>20.5.1 Total Suspended Solids 310</p> <p>20.5.1.1 Volatile Suspended Solids 310</p> <p>20.5.2 Biological Oxygen Demand 310</p> <p>20.5.3 Chemical Oxygen Demand 311</p> <p>20.5.4 Color 311</p> <p>20.5.5 Biodegradability of POME 311</p> <p>20.6 POME Treatment Methods 312</p> <p>20.6.1 Commercial Treatment Method 312</p> <p>20.6.2 Non-Commercial Treatment Method 312</p> <p>20.7 Water Recycling by Membrane Technique 313</p> <p>20.7.1 Benefits and Drawbacks of Membrane Treatment Method for POME 314</p> <p>20.8 Application of the SBR in POME Treatment 314</p> <p>20.8.1 Factors Affecting the SBR System 315</p> <p>20.8.2 Microbial Augmentation for POME 315</p> <p>20.9 Discussions 316</p> <p>20.10 Conclusion 316</p> <p>References 316</p> <p><b>Part G Green Water Harvesting </b><b>321</b></p> <p><b>21 Vegetation Advantages for Water and Soil Conservation </b><b>323<br /></b><i>Hadis Salehi Gahrizsangi, Saeid Eslamian, Nicolas R. Dalezios, Anna Blanta, and Mohadaseh Madadi</i></p> <p>21.1 Introduction 323</p> <p>21.2 Background 323</p> <p>21.2.1 Soil Erosion Concepts 323</p> <p>21.2.2 Water-Induced Erosion 324</p> <p>21.2.3 Water-Induced Erosion in the Slope and Agricultural Farms 325</p> <p>21.2.4 Soil andWater Conservation by Crop Management 326</p> <p>21.2.5 Conservation by Vetiver Grass 328</p> <p>21.3 Vegetation Advantage for Soil andWater Conservation in Artificial Plots 329</p> <p>21.3.1 Soil Erosion in Malaysia 329</p> <p>21.3.2 Soil andWater Conservation in Malaysia 331</p> <p>21.3.3 Case Study: Application of Vetiver Grass for Soil andWater Conservation in Artificial Plots 331</p> <p>21.4 Conclusions 334</p> <p>References 335</p> <p><b>22 Water Harvesting in Forests: An Important Step in Water-Food-Energy Nexus </b><b>337<br /></b><i>Rina Kumari and Saeid Eslamian</i></p> <p>22.1 Introduction 337</p> <p>22.2 GlobalWater Scarcity 337</p> <p>22.3 Change in Land Use-Land Cover and its Impact on Forest andWater Resources 339</p> <p>22.4 Forest Hydrology 339</p> <p>22.4.1 Hydrologic Processes in Forest 339</p> <p>22.4.2 Effects of Forest Structure on Hydrological Processes 340</p> <p>22.4.2.1 Stemflow 340</p> <p>22.4.2.2 Litterfall 341</p> <p>22.4.3 Preconditions for Rainwater Infiltration 341</p> <p>22.4.3.1 Vegetative Cover 342</p> <p>22.4.3.2 Soil Type 342</p> <p>22.4.4 Groundwater Conditions 342</p> <p>22.4.5 Dimensions of Hydrological Services Governed by Forest 342</p> <p>22.4.5.1 Water Quantity and Forests 342</p> <p>22.4.5.2 Water Quality and Forests 342</p> <p>22.4.5.3 Evapotranspiration, Precipitation, andWater Loss 342</p> <p>22.4.5.4 Erosion/Sediment Control and Forests 343</p> <p>22.4.5.5 Forests and Flood Control, Drought, and Fire Risks 343</p> <p>22.4.5.6 Forests and Groundwater 343</p> <p>22.4.5.7 Forests and Their Effect on Rainfall 343</p> <p>22.4.5.8 Forests and Riparian Management 343</p> <p>22.5 Rainwater Harvesting in Forests 343</p> <p>22.5.1 Definition and Typology of Rainwater Harvesting Systems 343</p> <p>22.6 Deforestation and its Impact 345</p> <p>22.7 Forest Management andWatershed Development 346</p> <p>22.8 Knowledge Gaps 347</p> <p>22.9 Forests andWater in International Agreements 348</p> <p>22.10 Role of Geospatial Technologies 348</p> <p>22.11 Managing the Climate-Water-Forest Nexus for Sustainable Development 349</p> <p>22.12 Case Studies 350</p> <p>22.12.1 CombatingWater Scarcity in Latin America 350</p> <p>22.12.2 Amazon River 350</p> <p>22.12.3 Case Study of Southeast Asia 350</p> <p>22.13 Conclusions 350</p> <p>References 351</p> <p><b>23 Rainwater and Green Roofs </b><b>355<br /></b><i>Sara Nazif, Seyed Ghasem Razavi, Pouria Soleimani, and Saeid Eslamian</i></p> <p>23.1 Introduction 355</p> <p>23.2 Green Roof Components 355</p> <p>23.2.1 Vegetation 356</p> <p>23.2.2 Growth Substrate 357</p> <p>23.2.3 Filter Layer 357</p> <p>23.2.4 Drainage Layer 358</p> <p>23.2.5 Root Barrier 358</p> <p>23.2.6 Waterproof Layer 358</p> <p>23.2.7 Insulation Layer 358</p> <p>23.2.8 Protection Layer 358</p> <p>23.3 Green Roof Types 358</p> <p>23.4 Green Roof Irrigation 359</p> <p>23.5 Green Roof Standards 359</p> <p>23.6 Green Roofs for Rainwater Collection and Storage 360</p> <p>23.6.1 Hydrologic Modeling of Green Roof Performance 360</p> <p>23.6.2 Green Roof Rainwater Retention Potential 362</p> <p>23.6.3 Green Roof Characteristics and Rainwater Retention Potential 362</p> <p>23.7 Green Roof Effect on Runoff Quality 363</p> <p>23.8 Other Functions of Green Roofs 364</p> <p>23.8.1 Improving Energy Usage Efficiency 365</p> <p>23.8.2 Air Pollution Reduction 365</p> <p>23.8.3 Human Feelings 366</p> <p>23.8.4 Green Roof Effect on Urban Heat Island 366</p> <p>23.8.5 Interior Noise Pollution Reduction 367</p> <p>23.9 Cost and Benefit Analysis of Green Roofs 367</p> <p>23.10 Conclusion 369</p> <p>References 369</p> <p><b>24 Green Landscaping and Plant Production with Water Harvesting Solutions </b><b>373<br /></b><i>Saeid Eslamian, Saeideh Parvizi, and Sayed Salman Ghaziaskar</i></p> <p>24.1 Introduction 373</p> <p>24.2 Water Harvesting 374</p> <p>24.3 Rainwater Harvesting 374</p> <p>24.3.1 Rainwater Harvesting in the Past 374</p> <p>24.3.2 Modern Rainwater Harvesting 375</p> <p>24.4 The Goals and Benefits of Rainwater Harvesting 376</p> <p>24.5 Impact of RWHR on Infiltration and Surface Runoff Processes 376</p> <p>24.5.1 Groundwater Recharge 376</p> <p>24.5.2 Surface Runoff Estimation 376</p> <p>24.6 Climate Change and RWH 376</p> <p>24.7 Landscape Functions and RWH 377</p> <p>24.8 Hydrological Functions and RWH 377</p> <p>24.8.1 Infiltration 377</p> <p>24.8.2 Groundwater Recharge 377</p> <p>24.8.3 Water Competition 378</p> <p>24.9 Soil Fertility and Biomass Production 378</p> <p>24.9.1 Soil Fertility 378</p> <p>24.9.2 Crop Yields and Biomass Production 378</p> <p>24.9.3 Biodiversity Conservation 378</p> <p>24.9.3.1 Changes in Floral Diversity 378</p> <p>24.9.3.2 Changes in Structural Heterogeneity/Patchiness 378</p> <p>24.9.3.3 Changes in Animal Diversity 379</p> <p>24.9.4 Sustainable Livelihoods 379</p> <p>24.9.4.1 Food Security 379</p> <p>24.9.4.2 Conflicts ConcerningWater Resources 379</p> <p>24.9.4.3 Income/Social Balance 379</p> <p>24.10 Discussions 380</p> <p>24.11 Conclusions 381</p> <p>References 381</p> <p><b>Part H Reliable Rainwater Harvesting and Storage Systems </b><b>385</b></p> <p><b>25 Comparing Rainwater Storage Options </b><b>387<br /></b><i>Sara Nazif, Hamed Tavakolifar, Hossein Abbasizadeh, and Saeid Eslamian</i></p> <p>25.1 Introduction 387</p> <p>25.2 History of Rainwater Harvesting 387</p> <p>25.3 Benefits of Rainwater Storage 388</p> <p>25.4 Main Rainwater Storage Options 389</p> <p>25.4.1 Surface Runoff Harvesting 389</p> <p>25.4.1.1 Surface Runoff Harvesting Using Surface and Underground Structures 389</p> <p>25.4.1.2 Surface Runoff Harvesting Using Paved and Unpaved Roads 390</p> <p>25.4.2 Rooftop Rainwater Harvesting 390</p> <p>25.4.2.1 Components of Rooftop Rainwater Harvesting 390</p> <p>25.4.2.2 The Usage of HarvestedWater 394</p> <p>25.4.3 Rainwater Harvesting In Situ 394</p> <p>25.4.3.1 Use of Topographic Depressions as Rainfall Harvesting Areas 394</p> <p>25.4.3.2 Use of Furrows as Rainwater Storage Areas 395</p> <p>25.5 Comparing Rainwater Storage Options 395</p> <p>25.6 Conclusion 398</p> <p>References 398</p> <p><b>26 Rainwater Harvesting Storage-Yield-Reliability Relationships </b><b>401<br /></b><i>John Ndiritu</i></p> <p>26.1 Introduction 401</p> <p>26.2 The Rainwater Harvesting Storage-Yield-Reliability Problem 401</p> <p>26.3 Modeling Storage-Yield-Reliability Relationships 402</p> <p>26.3.1 Modeling Approaches and Methods 402</p> <p>26.3.2 Behavior Analysis (Continuous Simulation) Method 405</p> <p>26.3.3 Sequent Peak Algorithm and Rippl’s Method 407</p> <p>26.3.4 Generalized Storage-Yield-Reliability Relationships 409</p> <p>26.4 Key Considerations 411</p> <p>26.4.1 How is the Adequacy of the Rainfall Time Series Assessed? 411</p> <p>26.4.2 What Modeling Methods are Best Suited for Use? 411</p> <p>26.4.3 When is It Essential to Apply Statistically-Based Reliability? How is this Done? 412</p> <p>26.4.4 When Do Generalized Storage-Yield-Reliability Relationships Need to Be Used? 412</p> <p>26.5 Conclusions 412</p> <p>References 413</p> <p><b>27 Towards Developing Generalized Equations for Calculating Potential Rainwater Savings </b><b>417<br /></b><i>Monzur A. Imteaz, Muhammad Moniruzzaman and, Abdullah Yilmaz</i></p> <p>27.1 Introduction 417</p> <p>27.2 State of the Art 418</p> <p>27.3 Methodology 419</p> <p>27.4 Study Area and Data 420</p> <p>27.5 Results 421</p> <p>27.6 Conclusions 423</p> <p>Acknowledgement 424</p> <p>References 424</p> <p><b>Part I Sustainable Water Harvesting and Conservation in a Changing Climate </b><b>427</b></p> <p><b>28 Water Harvesting, Climate Change, and Variability </b><b>429<br /></b><i>Jew Das, Manish Kumar Goyal, and N.V. Umamahesh</i></p> <p>28.1 Introduction 429</p> <p>28.2 Water Harvesting 431</p> <p>28.2.1 <i>Trans</i>-Himalayan Region 431</p> <p>28.2.1.1 Zing 431</p> <p>28.2.2 Western Himalaya 432</p> <p>28.2.2.1 Kul 432</p> <p>28.2.2.2 Naula 432</p> <p>28.2.2.3 Khatri 432</p> <p>28.2.3 Eastern Himalaya 432</p> <p>28.2.3.1 Apatani 432</p> <p>28.2.4 North Eastern Hill Ranges 432</p> <p>28.2.4.1 Zabo 432</p> <p>28.2.4.2 Bamboo Drip Irrigation 432</p> <p>28.2.5 Brahmaputra Valley 433</p> <p>28.2.5.1 Dongs 433</p> <p>28.2.5.2 Dungs 433</p> <p>28.2.6 Indo-Gangetic Plains 433</p> <p>28.2.6.1 Ahar and Pynes 433</p> <p>28.2.6.2 Bengal’s Inundation Channel 433</p> <p>28.2.6.3 Dighis 433</p> <p>28.2.6.4 Baolis 433</p> <p>28.2.7 Thar Desert 433</p> <p>28.2.7.1 Kunds 433</p> <p>28.2.7.2 Kuis/Beris 433</p> <p>28.2.7.3 Baoris/Bers 433</p> <p>28.2.7.4 Jhalaras 434</p> <p>28.2.7.5 Nadis 434</p> <p>28.2.7.6 Tobas 434</p> <p>28.2.7.7 Tankas 434</p> <p>28.2.7.8 Khadin 434</p> <p>28.2.7.9 Virdas 434</p> <p>28.2.7.10 Paar System 434</p> <p>28.2.8 Central Highlands 434</p> <p>28.2.8.1 Talab 434</p> <p>28.2.8.2 Saza Kuva 434</p> <p>28.2.8.3 Johad 434</p> <p>28.2.8.4 Naada/Bandha 434</p> <p>28.2.8.5 Pat 434</p> <p>28.2.8.6 Repat 434</p> <p>28.2.8.7 Chandela Tank 435</p> <p>28.2.8.8 Bundela Tank 435</p> <p>28.2.9 Eastern Highlands 435</p> <p>28.2.9.1 Katas /Mundas/Bandhas 435</p> <p>28.2.10 Deccan Plateau 435</p> <p>28.2.10.1 Cheruvu 435</p> <p>28.2.10.2 Kohli Tanks 435</p> <p>28.2.10.3 Bhanadaras 435</p> <p>28.2.10.4 Phad 435</p> <p>28.2.10.5 Kere 435</p> <p>28.2.10.6 The Ramtek Model 435</p> <p>28.2.11 Western Ghats 435</p> <p>28.2.11.1 Surangam 435</p> <p>28.2.12 Western Coastal Plains 435</p> <p>28.2.12.1 Virdas 435</p> <p>28.2.13 Eastern Ghats 435</p> <p>28.2.13.1 Korambus 435</p> <p>28.2.14 Eastern Coastal Plains 435</p> <p>28.2.14.1 Eri 435</p> <p>28.2.14.2 Ooranis 435</p> <p>28.2.15 Rooftop Harvesting 436</p> <p>28.2.16 Perforated Pavements 436</p> <p>28.2.17 Infiltration Pits 436</p> <p>28.2.18 Swale 436</p> <p>28.3 Case Study 437</p> <p>28.3.1 Study Area 437</p> <p>28.3.2 Climate and Rainfall 437</p> <p>28.3.3 GCM Projection and Scenarios 438</p> <p>28.3.4 Surplus Intensity 439</p> <p>28.4 Results and Discussion 439</p> <p>28.4.1 Understanding the Uncertainty 441</p> <p>28.5 Conclusion 443</p> <p>References 444</p> <p><b>29 Water Harvesting and Sustainable Tourism </b><b>447<br /></b><i>Neda Torabi Farsani, Homa Moazzen Jamshidi, Mohammad Mortazavi, and Saeid Eslamian</i></p> <p>29.1 Introduction 447</p> <p>29.2 Water Management: An Approach to Sustainable Tourism 447</p> <p>29.2.1 Water Harvesting and Museums 449</p> <p>29.3 Tourism andWater Harvesting Economy 451</p> <p>29.3.1 The Impact of Tourism onWater Demand 451</p> <p>29.3.2 Water Harvesting as a Supply-SideWater Management Strategy 451</p> <p>29.3.3 Financial and Economic Analysis of Rainwater Harvesting Projects 452</p> <p>29.3.4 Raising Revenue for Financing Rainwater Harvesting Projects 452</p> <p>29.3.5 Rainwater Harvesting in Modern Tourism 452</p> <p>29.4 Conclusion 453</p> <p>References 453</p> <p><b>30 Rainwater Harvesting Policy Issues in the MENA Region: Lessons Learned, Challenges, and</b></p> <p><b>Sustainable Recommendations 457<br /></b><i>Muna Yacoub Hindiyeh, Mohammed Matouq, and Saeid Eslamian</i></p> <p>30.1 Introduction 457</p> <p>30.2 Definitions of RWH 457</p> <p>30.3 Rainwater Harvesting Toward Millennium and Sustainable Development Goals 458</p> <p>30.4 Water Administration and Legislation 459</p> <p>30.5 Policy and Regulatory Approaches to RWH Use 459</p> <p>30.5.1 The Need for Policy 459</p> <p>30.5.2 Key Characteristics of Good Policy 461</p> <p>30.5.3 Framework for a Policy 461</p> <p>30.5.3.1 Policy Must Balance the Risks from Controlled RWH Use with the Alternatives 461</p> <p>30.5.3.2 Policy Must Be Integrated 461</p> <p>30.5.3.3 Policy Should Be Simple and Incentivize RWH Use 461</p> <p>30.5.3.4 Risk Management Should Be Behavior Based, Rather than Technology orWater-Quality Based 462</p> <p>30.5.3.5 Policy Development Should Include Stakeholders 462</p> <p>30.5.3.6 Policy Must Be Clear Regarding Implementation 462</p> <p>30.5.3.7 Policy Should Not Place Undue Financial Burdens on Users 462</p> <p>30.5.3.8 Privately Owned RWH Systems and Use Should Be Considered for Poor Communities 462</p> <p>30.5.3.9 Policy Should Differentiate with Regard to Scale 463</p> <p>30.6 Considerations When Establishing a Municipal Rainwater Harvesting Program 463</p> <p>30.7 Regulatory Approaches in Other Countries 464</p> <p>30.7.1 Australia 464</p> <p>30.7.2 Germany 465</p> <p>30.7.3 United Kingdom 465</p> <p>30.7.4 Bermuda 465</p> <p>30.7.5 The Netherlands 465</p> <p>30.7.6 India 465</p> <p>30.7.7 Indonesia 466</p> <p>30.7.8 Brazil 466</p> <p>30.7.9 China 466</p> <p>30.7.10 Capiz Province, The Philippines 466</p> <p>30.7.11 United States 466</p> <p>30.7.12 St. Thomas, US Virgin Islands 467</p> <p>30.7.13 Portland 468</p> <p>30.7.14 Singapore 468</p> <p>30.7.15 Kenya 468</p> <p>30.7.16 Namibia 469</p> <p>30.7.17 Middle East 469</p> <p>30.8 Challenges and Limitations 469</p> <p>30.9 Future Recommendations for the MENA Region 470</p> <p>30.10 Conclusion 470</p> <p>References 471</p> <p>Index 475</p>
<p><b>SAEID ESLAMIAN</b>, Isfahan University of Technology.</p> <p><b>FAEZEH ESLAMIAN</b>, McGill University.</p>
<p><b>HANDBOOK OF WATER HARVESTING AND CONSERVATION<br> BASIC CONCEPTS AND FUNDAMENTALS</b> <p>Water harvesting is gaining more and more recognition as a sustainable and resilient water supply options. It is economically viable, socially compatible and environmentally friendly. Water harvesting has proven to be a robust solution to overcome or reduce water shortages all over the world. It is important to understand how to apply this practice in a sustainable and effective way to make full use of its potential in a world increasingly threatened by water scarcity. <p>The<b><i> Handbook of Water Harvesting and Conservation: Basic Concepts and Fundamentals</i></b> is the most comprehensive, up-to-date and applied handbook on water harvesting and conservation yet published. The book's 30 chapters—written by 84 outstanding international experts from approximately 20 selected countries faced by drought—explore, critique and develop concepts and systems for water harvesting. The editors bring together many perspectives into a synthesis that is both academically based and practical in its potential applications. <p>The<b><i> Handbook of Water Harvesting and Conservation: Basic Concepts and Fundamentals</i></b> is an important tool for education, research and technical works in the areas of soil, water and watershed management and is highly useful for drought strategy planning, flood management and developing techniques to adapt to climate change in urban, agricultural, forest and rangeland areas.

Diese Produkte könnten Sie auch interessieren:

Decision Support Systems for Risk-Based Management of Contaminated Sites
Decision Support Systems for Risk-Based Management of Contaminated Sites
von: Antonio Marcomini, Glenn Walter Suter II, Andrea Critto
PDF ebook
96,29 €
Dynamics of Mercury Pollution on Regional and Global Scales
Dynamics of Mercury Pollution on Regional and Global Scales
von: Nicola Pirrone, Kathryn R. Mahaffey
PDF ebook
149,79 €