Details

Cloud and IoT-Based Vehicular Ad Hoc Networks


Cloud and IoT-Based Vehicular Ad Hoc Networks


1. Aufl.

von: Gurinder Singh, Vishal Jain, Jyotir Moy Chatterjee, Loveleen Gaur

197,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 21.04.2021
ISBN/EAN: 9781119761815
Sprache: englisch
Anzahl Seiten: 432

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>CLOUD AND IOT-BASED VEHICULAR AD HOC NETWORKS</b> <p><b>This book details the architecture behind smart cars being fitted and connected with vehicular cloud computing, IoT and VANET as part of the intelligent transport system (ITS).</b> <p>As technology continues to weave itself more tightly into everyday life, socioeconomic development has become intricately tied to ever-evolving innovations. An example of this is the technology being developed to address the massive increase in the number of vehicles on the road, which has resulted in more traffic congestion and road accidents. This challenge is being addressed by developing new technologies to optimize traffic management operations.<p>This book describes the state-of-the-art of the recent developments of Internet of Things (IoT) and cloud computing-based concepts that have been introduced to improve Vehicular Ad-Hoc Networks (VANET) with advanced cellular networks such as 5G networks and vehicular cloud concepts. 5G cellular networks provide consistent, faster and more reliable connections within the vehicular mobile nodes. By 2030, 5G networks will deliver the virtual reality content in VANET which will support vehicle navigation with real time communications capabilities, improving road safety and enhanced passenger comfort.<p>In particular, the reader will learn:<ul><li>A range of new concepts in VANETs, integration with cloud computing and IoT, emerging wireless networking and computing models </li><li>New VANET architecture, technology gap, business opportunities, future applications, worldwide applicability, challenges and drawbacks </li><li>Details of the significance of 5G Networks in VANET, vehicular cloud computing, edge (fog) computing based on VANET.</li></ul><p><b>Audience</b><p>The book will be widely used by researchers, automotive industry engineers, technology developers, system architects, IT specialists, policymakers and students.
<p>Preface xv</p> <p>Acknowledgment xix</p> <p><b>1 IoT in 5th Generation Wireless Communication 1<br /></b><i>Sandeep Mathur and Ankita Arora</i></p> <p>1.1 Introduction 2</p> <p>1.2 Internet of Things With Wireless Communication 3</p> <p>1.2.1 Modules Used for the Communication Protocol 5</p> <p>1.2.1.1 Wi-Fi Modules for the Connectivity in Less Range 5</p> <p>1.2.1.2 Wi-Fi Modules for Connectivity in Long Range 6</p> <p>1.2.2 The Relation Between the Different Internet of Things Protocol 7</p> <p>1.2.2.1 Effect of Distinction Among Node and Transmission Power 8</p> <p>1.3 Internet of Things in 5G Mobile Computing 9</p> <p>1.3.1 Practical Aspects of Integrating the Internet of Things With 5G Technologies 10</p> <p>1.3.2 The Working of the 5G for the People and Its Generalization 14</p> <p>1.3.3 5G Deployment Snapshot 15</p> <p>1.3.4 Architecture of Internet of Things With 5G 16</p> <p>1.4 Internet of Things and 5G Integration With Artificial Intelligence 16</p> <p>1.4.1 Opportunity in the Future 20</p> <p>1.4.2 Challenges Arising 21</p> <p>1.4.2.1 The Management of IoT Devices Might Become Additional Efficient 21</p> <p>1.4.2.2 5G Protocol Flaws Might Cause Security Flaws 22</p> <p>1.4.2.3 5G Could Amend the Styles of Attacks Folks With IoT Devices 22</p> <p>1.5 A Genetic Algorithm for 5G Technologies With Internet of Things 23</p> <p>1.5.1 System Model 24</p> <p>1.5.2 The Planned Algorithm 24</p> <p>1.6 Conclusion & Future Work 27</p> <p>References 27</p> <p><b>2 Internet of Things-Based Service Discovery for the 5G-VANET Milieu 31<br /></b><i>P. Dharanyadevi, M. Julie Therese and K. Venkatalakshmi</i></p> <p>2.1 VANET 32</p> <p>2.2 5G 33</p> <p>2.2.1 Why is 5G Used in VANET? 34</p> <p>2.3 Service Discovery 34</p> <p>2.4 Service Discovery in 5G-VANET Milieu 36</p> <p>2.4.1 Service Discovery Methods 36</p> <p>2.4.2 A Framework of Service Discovery in the 5G-VANET Milieu 36</p> <p>2.5 Service Discovery Architecture for 5G-VANET Milieu 39</p> <p>2.5.1 Vehicle User Side Discovery 39</p> <p>2.5.2 Service Provider Side Discovery 39</p> <p>2.5.3 Service Instance 39</p> <p>2.5.4 Service Registry 40</p> <p>2.6 Performance Evaluation Metrics for Service Discovery Mechanism in the 5G-VANET Milieu 41</p> <p>2.7 The Advantage of Service Discovery in the 5G-VANET Milieu 41</p> <p>2.8 The Disadvantage of Service Discovery in the 5G-VANET Milieu 42</p> <p>2.9 Future Enhancement and Research Directions 42</p> <p>2.10 Conclusions 43</p> <p>References 43</p> <p><b>3 IoT-Based Intelligent Transportation System for Safety 47<br /></b><i>Suthanthira Vanitha, N., Radhika, K., Maheshwari, M., Suresh, P. and Meenakshi, T.</i></p> <p>3.1 Introduction 48</p> <p>3.2 Elements of ITS 48</p> <p>3.3 Role of ITS in Safety 50</p> <p>3.4 Sensor Technologies 50</p> <p>3.4.1 Implanted Vehicle Sensor Applications 52</p> <p>3.5 Classification of Vehicle Communication Systems 53</p> <p>3.5.1 V2V Communication Access Technologies 55</p> <p>3.6 IoT in Vehicles 56</p> <p>3.7 Embedded Controllers 58</p> <p>3.8 ITS Challenges and Opportunities 61</p> <p>References 62</p> <p><b>4 Cloud and IoT-Based Vehicular Ad Hoc Networks (VANET) 67<br /></b><i>Sunita Sunil Shinde, Ravi M.Yadahalli and Ramesh Shabadkar</i></p> <p>4.1 Introduction to VANET 68</p> <p>4.2 Vehicle-Vehicle Communication (V2V) 68</p> <p>4.3 Vehicle–Infrastructure Communication (V2I) 68</p> <p>4.4 Vehicle–Broadband Cloud Communication (V2B) 68</p> <p>4.5 Characteristics of VANET 71</p> <p>4.6 Prime Applications 74</p> <p>4.7 State-of-the-Art Technologies 74</p> <p>4.7.1 DSRC/WAVE 74</p> <p>4.7.2 4G-LTE 76</p> <p>4.8 VANET Challenges 76</p> <p>4.9 Video Streaming Broadcasting 78</p> <p>4.9.1 Video Streaming Mechanisms 79</p> <p>4.9.2 Video Streaming Classes Over VANET 80</p> <p>References 80</p> <p><b>5 Interleavers-Centric Conflict Management Solution for 5G Vehicular and Cellular-IoT Communications 83<br /></b><i>Manish Yadav and Pramod Kumar Singhal</i></p> <p>5.1 Introduction 84</p> <p>5.2 Background 85</p> <p>5.2.1 Vehicular Communication 85</p> <p>5.2.2 IoT Communication 87</p> <p>5.3 Device Identity Conflict Issue 89</p> <p>5.4 Related Work 89</p> <p>5.5 Interleavers-Centric Conflict Management (ICM) 90</p> <p>5.5.1 The Essence of Conflict Resolution 90</p> <p>5.5.2 The Motivation 91</p> <p>5.5.3 ICM: An Approach for Conflict Resolution 91</p> <p>5.5.3.1 Advantages of ICM 92</p> <p>5.5.3.2 Recommended Interleavers for ICM 93</p> <p>5.6 Signaling Procedures for Enabling ICM 93</p> <p>5.6.1 Signaling Between CIoT UE and Cellular or CIoT RAN 93</p> <p>5.6.2 Signaling Trilogy for CIoT Communications 95</p> <p>5.6.3 Signaling for V2I Communications 96</p> <p>5.6.4 Signaling for gNB-Initiated Software Upgrade 97</p> <p>5.7 Conclusion 98</p> <p>References 99</p> <p><b>6 Modeling of VANET for Future Generation Transportation System Through Edge/Fog/Cloud Computing Powered by 6G 105<br /></b><i>Suresh Kumar, K., Radha Mani, A.S., Sundaresan, S. and Ananth Kumar, T.</i></p> <p>6.1 Introduction 106</p> <p>6.2 Related Works 109</p> <p>6.3 Proposed System Overview 111</p> <p>6.3.1 Driver Monitoring System 111</p> <p>6.3.2 Edge/Fog/Cloud Computing 113</p> <p>6.3.3 Software Defined Networking (SDN) Along With VANET 113</p> <p>6.3.4 Integration of VANET With 5G Networks 114</p> <p>6.3.5 IoT with 6G Networks 114</p> <p>6.4 Modeling of Proposed System 115</p> <p>6.5 Results and Discussion 118</p> <p>6.6 Conclusion 122</p> <p>References 122</p> <p><b>7 Integrating IoT and Cloud Computing for Wireless Sensor Network Applications 125<br /></b><i>M. Julie Therese, P. Dharanyadevi and K. Harshithaa</i></p> <p>7.1 Introduction 125</p> <p>7.1.1 IoT Architecture 126</p> <p>7.1.2 Cloud Front End and Back End Architecture 128</p> <p>7.1.3 Wireless Sensor Network 129</p> <p>7.1.4 IoT Cloud and WSN Architecture 132</p> <p>7.1.5 Research Motive 132</p> <p>7.2 Challenges and Opportunities 133</p> <p>7.2.1 Challenges IoT Cloud Faces 133</p> <p>7.2.2 Opportunities IoT Cloud Offers 134</p> <p>7.3 Case Study 134</p> <p>7.3.1 Case 1 Improved Pollution Monitoring System for Automobiles Using Cloud-Based Wireless Sensor Networks 137</p> <p>7.3.2 Case 2 Hybrid Electric Vehicle 138</p> <p>7.4 Conclusion 139</p> <p>References 140</p> <p><b>8 Comparative Study on Security and Privacy Issues in VANETs 145<br /></b><i>B. Tarakeswara Rao, R.S.M. Lakshmi Patibandla and V. Lakshman Narayana</i></p> <p>8.1 Introduction 146</p> <p>8.2 Characteristics of VANETs 149</p> <p>8.2.1 VANETs Features 149</p> <p>8.2.2 Challenges in VANET 150</p> <p>8.2.3 Mitigating Features 151</p> <p>8.3 Literature Survey 152</p> <p>8.4 Authentication Requirements in VANETs Communications 153</p> <p>8.4.1 Security Model for VANETs’ Communication 154</p> <p>8.4.2 VANET Security Services 155</p> <p>8.4.3 Security Recommendation 156</p> <p>8.4.4 Comparative Analysis 157</p> <p>8.5 Conclusion 160</p> <p>References 160</p> <p><b>9 Software Defined Network Horizons and Embracing its Security Challenges: From Theory to Practice 163<br /></b><i>Sugandhi Midha, Khushboo Tripathi and M.K. Sharma</i></p> <p>9.1 Introduction 164</p> <p>9.2 Background and Literature Survey 166</p> <p>9.3 Objective and Scope of the Chapter 169</p> <p>9.4 SDN Architecture Overviews 171</p> <p>9.5 Open Flow 174</p> <p>9.6 SDN Security Architecture 178</p> <p>9.7 Techniques to Mitigate SDN Security Threats 180</p> <p>9.7.1 Performance Metrics 186</p> <p>9.7.2 Performance Tests 186</p> <p>9.7.3 Data Hiding-Based Geo Location Authentication Protocol 188</p> <p>9.7.4 Identity Access Management (IAM) Extended Policies 191</p> <p>9.7.5 Extended Identity-Based Cryptography 192</p> <p>9.8 Future Research Directions 194</p> <p>9.9 Conclusions 195</p> <p>References 196</p> <p><b>10 Bio-Inspired Routing in VANET 199<br /></b><i>Alankrita Aggarwal, Shivani Gaba, Shally Nagpal and Bhavanshu Vig</i></p> <p>10.1 Introduction 199</p> <p>10.2 Geography-Based Routing 202</p> <p>10.3 Topology-Based Routing 203</p> <p>10.3.1 Drawbacks 203</p> <p>10.3.2 Literature Review 204</p> <p>10.4 Biological Computing 208</p> <p>10.5 Elephant Herding Optimization Algorithm 209</p> <p>10.6 Research Methodology 211</p> <p>10.6.1 Clan Operator 211</p> <p>10.6.2 Separating Operator 212</p> <p>10.6.3 Simulation Results 213</p> <p>10.7 Conclusion 216</p> <p>References 216</p> <p><b>11 Distributed Key Generation for Secure Communications Between Different Actors in Service Oriented Highly Dense VANET 221<br /></b><i>Deena Nath Gupta and Rajendra Kumar</i></p> <p>11.1 Introduction 222</p> <p>11.2 Hierarchical Clustering 224</p> <p>11.3 Layer-Wise Key Generation 225</p> <p>11.4 Implementation 226</p> <p>11.5 Randomness Test 227</p> <p>11.6 Brute Force Attack Analysis 228</p> <p>11.7 Conclusion 229</p> <p>References 230</p> <p><b>12 Challenges, Benefits and Issues: Future Emerging VANETs and Cloud Approaches 233<br /></b><i>Bhanu Chander</i></p> <p>12.1 Introduction 234</p> <p>12.2 VANET Background 236</p> <p>12.3 VANET Communication Standards 238</p> <p>12.4 VANET Applications 239</p> <p>12.4.1 Safety Applications 239</p> <p>12.4.2 Non-Safety Applications 240</p> <p>12.5 VANET Sensing Technologies 242</p> <p>12.5.1 Sensing Technology 242</p> <p>12.5.2 Positioning Technologies 243</p> <p>12.5.3 Vision Technologies 244</p> <p>12.5.4 Vehicular Networks 244</p> <p>12.6 Trust in Ad Hoc Networks 244</p> <p>12.6.1 Cryptographic Approaches 245</p> <p>12.6.2 Recommendation-Based Approaches 245</p> <p>12.6.3 Fuzzy Logic-Based Approaches 245</p> <p>12.6.4 Game Theory-Based Approaches 246</p> <p>12.6.5 Infrastructure-Based Approaches 246</p> <p>12.6.6 Road- and Consensus-Based Advances 246</p> <p>12.6.7 Blockchain-Based Approaches 246</p> <p>12.6.8 Machine Learning Base Trust Management in Vehicular Networks 247</p> <p>12.6.9 Trust in Cellular-Based (5G) VANET 247</p> <p>12.6.10 Software-Defined VANET (SDVANET) 247</p> <p>12.6.11 Trust in Vehicular Social Networks (VSN) 248</p> <p>12.6.12 Future Challenges in VANET Trust Technique 248</p> <p>12.7 Software-Defined Network (SDN) in VANET 249</p> <p>12.7.1 Literature Work on SDVN 250</p> <p>12.7.2 Advantages 251</p> <p>12.7.3 Challenge 252</p> <p>12.8 Clustering Approaches: Issues 253</p> <p>12.9 Up-and-Coming Technologies for Potential VANET 254</p> <p>12.9.1 Edge Cloud Computing 254</p> <p>12.9.1.1 Fog Computing 254</p> <p>12.9.1.2 Mobile Edge Computing (MEC) 255</p> <p>12.9.1.3 Cloudlets 255</p> <p>12.10 Challenges, Open Issues and Future Work of VANETs 256</p> <p>12.10.1 Challenges of VANET 256</p> <p>12.10.2 Open Issues in VANET Development 257</p> <p>12.10.3 Future Research Work 258</p> <p>12.11 Conclusion 259</p> <p>References 260</p> <p><b>13 Role of Machine Learning for Ad Hoc Networks 269<br /></b><i>Shivani Gaba, Alankrita Aggarwal and Shally Nagpal</i></p> <p>13.1 Introduction 270</p> <p>13.2 Literature Survey 273</p> <p>13.3 Machine Learning Computing 277</p> <p>13.3.1 Reinforcement Learning 277</p> <p>13.3.2 Q-Learning/Transfer Learning 278</p> <p>13.3.3 Fuzzy Logic 278</p> <p>13.3.4 Logistic Regression 279</p> <p>13.4 Methodology 280</p> <p>13.4.1 Rate Estimation Algorithm 280</p> <p>13.4.2 Route Selection Algorithm 281</p> <p>13.4.3 Algorithm for Congestion Free Route (Congestion Algorithm) 283</p> <p>13.5 Simulation Results 284</p> <p>13.6 Conclusions 287</p> <p>References 287</p> <p><b>14 Smart Automotive System With CV2X-Based Ad Hoc Communication 293<br /></b><i>Rabindranath Bera</i></p> <p>14.1 Introduction 294</p> <p>14.2 Realization of Smart Vehicle 300</p> <p>14.3 Analysis of NXP Smart Vehicle Architecture 303</p> <p>14.4 Smart Vehicle Proof of Concept (POC) 308</p> <p>14.4.1 ECE, SMIT Adaptation of 3GPP 5G Standard for 5G-Enabled Smart Vehicle 308</p> <p>14.4.2 Emulation of Smart Vehicle at ECE, SMIT LAB 308</p> <p>14.4.2.1 Emulation of V2I (Vehicle to Infrastructure) 5G URLLC Communication Between i) One Intelligent Roadside Unit (RSU), ii) One Smart Vehicle (SV) 308</p> <p>14.4.2.2 Emulation of V2V (Vehicle to Vehicle) 5G URLLC Communication Between Two Smart Vehicles i) One Smart Vehicle (SV1), ii) Another Smart Vehicle (SV2) 314</p> <p>14.5 Smart Vehicle Trials 315</p> <p>14.6 System Comparison 321</p> <p>14.7 Summary and Conclusion 321</p> <p>Acknowledgement 321</p> <p>References 321</p> <p><b>15 QoS Enhancement in MANET 325<br /></b><i>Jayson K. Jayabarathan, S. Robinson and A. Sivanantha Raja</i></p> <p>15.1 Introduction 325</p> <p>15.2 Priority Aware Mechanism (PAM) 327</p> <p>15.3 Power Aware Mechanism 329</p> <p>15.4 Hybrid Mechanism 330</p> <p>15.5 Simulation Results and Discussion 332</p> <p>15.6 Performance Comparison 339</p> <p>15.7 Conclusion 342</p> <p>References 346</p> <p><b>16 Simulating a Smart Car Routing Model (Implementing MFR Framework) in Smart Cities 349<br /></b><i>Nada M. Alhakkak</i></p> <p>16.1 Introduction 350</p> <p>16.2 Background 350</p> <p>16.3 Literature Review 352</p> <p>16.4 Methodology 355</p> <p>16.4.1 System Framework 355</p> <p>16.5 Discussion and a Future Direction 357</p> <p>16.5.1 Case Study 358</p> <p>16.5.2 Fog-Simulator 361</p> <p>16.5.3 MOA-Simulator 361</p> <p>16.5.4 CloudSim-Simulator 361</p> <p>16.6 Conclusions 364</p> <p>References 365</p> <p><b>17 Potentials of Network-Based Unmanned Aerial Vehicles 369<br /></b><i>P. K. Garg</i></p> <p>17.1 Introduction 370</p> <p>17.2 Applications of UAVs 371</p> <p>17.3 Advantages of UAVs 375</p> <p>17.4 UAV Communication System 376</p> <p>17.5 Types of Communication 378</p> <p>17.6 Wireless Sensor Network (WSN) System 380</p> <p>17.7 The Swarm Approach 383</p> <p>17.7.1 Infrastructure-Based Swarm Architecture 384</p> <p>17.7.2 FANET-Based Swarm Architecture 385</p> <p>17.8 Market Potential of UAVs 391</p> <p>17.9 Conclusion 392</p> <p>References 393</p> <p>Index 399</p>
<p><b>Gurinder Singh</b>, Group Vice Chancellor - Amity Universities, Director General, Amity Group of Institutions and Vice Chairman, Global Foundation for Learning Excellence & Director General Amity International Business School, has an extensive experience of more than 26 years in Institutional Building, Teaching, Consultancy, Research & Industry. A renowned scholar & academician in the area of International Business, he holds a prestigious Doctorate in the area along with a Post Graduate degree from Indian Institute of Foreign Trade.</p> <p><b>Vishal Jain</b> is an associate professor at Bharati Vidyapeeth's Institute of Computer Applications and Management (BVICAM), New Delhi, India. He has more than 350 research citation indices with Google Scholar (h-index score 9 and i-10 index 9). He has authored more than 70 research papers in reputed conferences and journals indexed by Web of Science and Scopus, as well as authored and edited more than 10 books with various international publishers. His research areas include information retrieval, semantic web, ontology engineering, data mining, adhoc networks, and sensor networks.</p> <p><b>Jyotir Moy Chatterjee</b> is working as an Assistant Professor (IT) at Lord Buddha Education Foundation, Kathmandu, Nepal. He has completed M.Tech in Computer Science & Engineering from Kalinga Institute of Industrial Technology, Bhubaneswar, India.</p> <p><b>Loveleen Gaur</b>, Professor and Program Director (MBA Business Intelligence and Data Analytics), Amity International Business School, Amity University, Noida. Loveleen Gaur is an established Author, Researcher, Teacher, Educator, consultant, Administrator and Program leader. She has published about 12 books and more than 80 research papers in high quality impact journals.</p>

Diese Produkte könnten Sie auch interessieren:

Structural Dynamics in Engineering Design
Structural Dynamics in Engineering Design
von: Nuno M. M. Maia, Dario Di Maio, Alex Carrella
PDF ebook
97,99 €
Automatisierung 4.0
Automatisierung 4.0
von: Thomas Schmertosch, Markus Krabbes, Christian Zinke-Wehlmann
EPUB ebook
44,99 €