Details

Arsenic in Plants


Arsenic in Plants

Uptake, Consequences and Remediation Techniques
1. Aufl.

von: Prabhat Kumar Srivastava, Rachana Singh, Parul Parihar, Sheo Mohan Prasad

157,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 12.09.2022
ISBN/EAN: 9781119791454
Sprache: englisch
Anzahl Seiten: 448

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Arsenic in Plants</b> <p><b>Comprehensive resource detailing the chemistry, toxicity and impact of arsenic in plants, and solutions to the problem</b> <p><i>Arsenic in Plants: Uptake, Consequences and Remediation Techniques</i> provides comprehensive coverage of the subject, detailing arsenic in our environment, the usage of arsenicals in crop fields, phytotoxicity of arsenic and arsenic’s impact on the morphology, anatomy and quantitative and qualitative traits of different plant groups, including their physiology and biochemistry. The work emphasizes the occurrence of arsenic, its speciation and transportation in plants, and differences in mechanisms of tolerance in hyper-accumulator and non-accumulator plants. <p>Throughout the text, the highly qualified authors delve into every facet of the interaction of arsenic with plants, including the ionomics, genomics, transcriptomics and proteomics in relation to arsenic toxicity, impact of exogenous phytohormones and growth-regulating substances, management of arsenic contamination in the soil-plant continuum, phytoremediation of arsenic toxicity and physical removal of arsenic from water. General discussion has also been included on subjects such as the ways through which this metalloid affects plant and human systems. <p>Topics covered include: <ul><li>Introduction and historical background of arsenic and the mechanism of arsenic transport and metabolism in plants</li> <li>Arsenic-induced responses in plants, including impact on biochemical processes and different plant groups, from cyanobacteria to higher plants</li> <li>The role of phytohormones, mineral nutrients, metabolites and signaling molecules in regulating arsenic-induced toxicity in plants</li> <li>Genomic, proteomic, metabolomic, ionomic and transcriptional regulation during arsenic stress</li> <li>Strategies to reduce the arsenic contamination in soil-plant systems and arsenic removal by phytoremediation techniques</li></ul> <p>Researchers, academics, and students of plant physiology, biotechnology, and agriculture will find valuable information in <i>Arsenic in Plants</i> to understand this pressing subject in full, along with its implications and how we can adapt our strategies and behaviors to promote reduced contamination through practical applications.
<p>List of Contributors xvi</p> <p>Preface xxiv</p> <p><b>1 An Introduction to Arsenic: Sources, Occurrence, and Speciation 1<br /> </b><i>Jabbar Khan, Govind Gupta, Riddhi Shrivastava, and Naveen Kumar Singh</i></p> <p>1.1 Introduction 1</p> <p>1.2 Status of Arsenic Contamination Around the World 2</p> <p>1.3 Arsenic in the Aquatic and Terrestrial Environment 3</p> <p>1.4 Absolute Bioavailability and Bioaccessibility of As in Plants and Agronomic Systems 4</p> <p>1.5 Factors Determining Arsenic Speciation and Bioavailability in Soil 4</p> <p>1.5.1 Effect of Redox Potential (Eh) and pH 4</p> <p>1.5.2 Interactions with Al, Fe, and Mn Oxides and Oxyhydroxides 5</p> <p>1.5.3 Interactions with P, Si, and Other Elements’ Concentration in the Soil 6</p> <p>1.5.4 Interactions with Organic Matter 7</p> <p>1.5.5 Clay Minerals and Other Factors 8</p> <p>1.6 Arsenic Speciation in Plants 8</p> <p>1.6.1 Methods of Determination of As and As Species in Plants 8</p> <p>1.6.2 Uptake and Efflux Mechanism of Arsenate and Arsenite Species 9</p> <p>1.6.3 Uptake and Efflux Mechanism of Methylated Arsenic Species 11</p> <p>1.6.4 Arsenic and Rhizosphere Interaction (Mycorrhizal Fungi, Rhizofiltration) 12</p> <p>1.7 Thiolated Arsenic and Bioavailability of Thiolated As Species in Plants and Terrestrial Environments 13</p> <p>1.8 Conclusion 13</p> <p>Acknowledgments 14</p> <p>References 14</p> <p><b>2 Chemistry and Occurrence of Arsenic in Water 25<br /> </b><i>Marta Irene Litter</i></p> <p>2.1 Chemical Properties of Arsenic 25</p> <p>2.2 Worldwide Occurrence of Arsenic 26</p> <p>2.3 Arsenic Occurrence in Natural Media 29</p> <p>2.4 Arsenic Mobilization in Natural Media 31</p> <p>2.5 Biological Methylation of Arsenic in Organisms 35</p> <p>2.6 Anthropogenic Arsenic Contamination 39</p> <p>2.7 Toxicity of Arsenic in Waters 40</p> <p>2.8 Conclusion 41</p> <p>References 42</p> <p><b>3 Arsenic Transport and Metabolism in Plants 49<br /> </b><i>Gerald Zvobgo</i></p> <p>3.1 Introduction 49</p> <p>3.2 Arsenite Influx and Efflux 50</p> <p>3.3 Arsenate Influx and Efflux 51</p> <p>3.3.1 Arsenate and Phosphate Chemistry 51</p> <p>3.3.2 Effects of As and P in Plants 53</p> <p>3.3.3 Nature of Phosphate Transporters in Plants 53</p> <p>3.3.4 Variations in PHT upon As and P Addition 54</p> <p>3.3.5 Gene Manipulation of PHTs and PHT Related TFs 55</p> <p>3.4 Transportation of Methylated As Species 56</p> <p>3.5 Arsenic Metabolism in Plants 56</p> <p>3.6 Conclusion 57</p> <p>References 58</p> <p><b>4 Arsenic Induced Responses in Plants: Impacts on Different Plant Groups, from Cyanobacteria to Higher Plants 64<br /> </b><i>Kavita Ghosal, Moumita Chatterjee, Sharmistha Ganguly, Subhamita Sen Niyogi, and Dwaipayan Sinha</i></p> <p>4.1 Introduction 64</p> <p>4.2 Responses of Arsenic on Various Plant Groups 66</p> <p>4.3 Arsenic Response in Cyanophycean Algae 67</p> <p>4.4 Responses on Other Groups of Algae (Chlorophyceae, Phaeophyceae, Rhodophyceae, Diatoms, Xanthophyceae, Charophyceae, etc.) 69</p> <p>4.4.1 Chlorophyceae 69</p> <p>4.4.2 Phaeophyceae 70</p> <p>4.4.3 Rhodophyceae 70</p> <p>4.4.4 Diatoms 70</p> <p>4.5 Responses on Moss 71</p> <p>4.6 Arsenic Response on Pteridophyte 72</p> <p>4.7 Responses in Angiosperms 73</p> <p>4.8 Perception of Arsenic Stress by Plants and Triggering of Signaling Cascades 76</p> <p>4.9 Mechanistic Aspects of Responses Related to Arsenic (Effect on ATP Synthesis, Photosynthesis, DNA, Protein, Cell Membrane, Carbohydrate, and Lipid Metabolism) 79</p> <p>4.9.1 Effect of Arsenic on ATP Synthesis 79</p> <p>4.9.2 Arsenic’s Effect on Photosynthesis 79</p> <p>4.9.3 Effect of Arsenic on Cell Membrane 80</p> <p>4.9.4 Arsenic Induced Oxidative Stress 80</p> <p>4.9.5 Effect of Arsenic on Carbohydrate Metabolism 80</p> <p>4.9.6 Effect of Arsenic on Lipid Metabolism 81</p> <p>4.9.7 Effect of Arsenic on Protein 81</p> <p>4.9.8 Effect of Arsenic on DNA 82</p> <p>4.10 Future Prospects and Conclusion 82</p> <p>References 83</p> <p><b>5 Arsenic-Induced Responses in Plants: Impacts on Morphological, Anatomical, and Other Quantitative and Qualitative Characters 99<br /> </b><i>Sumaya Farooq, Simranjeet Singh, Vijay Kumar, Daljeet Singh Dhanjal, Praveen C. Ramamurthy, and Joginder Singh</i></p> <p>5.1 Introduction 99</p> <p>5.2 Impact of Arsenic on the Morphological Characters of Plants 100</p> <p>5.3 Impact of Arsenic on the Anatomical Characters of Plants 101</p> <p>5.4 Effect of As on stem Anatomy of Plants 102</p> <p>5.4.1 Effect of Arsenic on Anatomy of Plants Roots 103</p> <p>5.5 Impacts of Arsenic on Quantitative Characters of Plants 103</p> <p>5.5.1 Root Plasmolysis 103</p> <p>5.5.2 Cell Division 103</p> <p>5.5.3 Biomass 104</p> <p>5.5.4 Energy Flow 104</p> <p>5.5.5 Photosynthetic Pigments 104</p> <p>5.6 Impact of Arsenic on the Qualitative Characters of Plants 105</p> <p>5.6.1 Cellular Membrane Damage 105</p> <p>5.6.2 Leaf Reflectance 105</p> <p>5.6.3 Water Loss 106</p> <p>5.7 Conclusion 106</p> <p>References 107</p> <p><b>6 Arsenic-Induced Responses in Plants: Impacts on Biochemical Processes 112<br /> </b><i>Sanjay Kumar, Varsha Rani, Simranjeet Singh, Dhriti Kapoor, Daljeet Singh Dhanjal, Ankita Thakur, Mamta Pujari, Praveen C. Ramamurthy, and Joginder Singh</i></p> <p>6.1 Introduction 112</p> <p>6.2 Arsenic Effect on Biochemical Process in Plants 113</p> <p>6.3 Oxidative Stress on the Arsenic-Induced Plant 114</p> <p>6.4 Carbohydrate Metabolism in the Arsenic-Induced Plant 116</p> <p>6.5 Lipid Metabolism in the Arsenic-Induced Plant 118</p> <p>6.6 Protein Metabolism in the Arsenic-Induced Plant 120</p> <p>6.7 Conclusion 121</p> <p>References 122</p> <p><b>7 Photosynthetic Responses of Two Salt-Tolerant Plants, Tamarix gallica and Arthrocnemum indicum Against Arsenic Stress: A Case Study 129<br /> </b><i>Dhouha Belhaj Sghaier, Sílvia Pedro, Bernardo Duarte, Isabel Caçador, and Noomene Sleimi</i></p> <p>7.1 Introduction 129</p> <p>7.2 Metal Uptake 131</p> <p>7.3 Impact of Arsenic on Photosynthetic Pigments 133</p> <p>7.4 Effect of Arsenic on Photosynthetic Apparatus 137</p> <p>7.5 Conclusion 147</p> <p>References 148</p> <p><b>8 Genomic and Transcriptional Regulation During Arsenic Stress 153<br /> </b><i>Madhu Tiwari, Maria Kidwai, Neelam Gautam, and Debasis Chakrabarty</i></p> <p>8.1 Introduction 153</p> <p>8.2 Study of Differentially Regulated Genes During Arsenic Stress in Plants 154</p> <p>8.3 Genetic Study of Arsenic-Responsive Genes in Plants 158</p> <p>8.3.1 Genetic Study of Transporters Involved in Arsenic Uptake and Translocation 158</p> <p>8.3.1.1 Transporters Involved in Arsenate Uptake in Plants 158</p> <p>8.3.1.2 Transporters for AsIII Uptake in Plants 160</p> <p>8.3.1.3 Genes Involved in Intracellular AsV to AsIII Conversion in Plants 160</p> <p>8.3.1.4 Transporters for As Translocation 162</p> <p>8.3.1.5 Genetic Study of As Detoxification Genes in Plants 163</p> <p>8.4 Concluding Remarks and Future Prospects 165</p> <p>Acknowledgments 166</p> <p>References 166</p> <p><b>9 Proteomic Regulation During Arsenic Stress 173<br /> </b><i>Naina Marwa, Sunil Kumar Gupta, Gauri Saxena, Vivek Pandey, and Nandita Singh</i></p> <p>9.1 Introduction 173</p> <p>9.1.1 Proteins in Antioxidative Defense Strategies 174</p> <p>9.2 Molecular Chaperones in Response to Arsenic Stress 175</p> <p>9.3</p> <p>Participation of Protein in CO 2 Assimilation and Photosynthetic Activity 177</p> <p>9.4 Pathogen-Responsive Proteins (PR) in Response to Arsenic Stress 178</p> <p>9.5 Participation of Proteins in Energy Metabolism 178</p> <p>9.6 Possible Pan-interactomics 179</p> <p>9.7 Conclusion 180</p> <p>References 180</p> <p><b>10 Metabolomic Regulation During the Arsenic Stress 185<br /> </b><i>Pooja Sharma, Anuj Kumar Tiwari, Neeraj Kumar Dubey, Charu Chaturvedi, Amit Prakash Raghuvanshi, and Surendra Pratap Singh</i></p> <p>10.1 Introduction 185</p> <p>10.2 Arsenic Uptake/Translocation in Plants 187</p> <p>10.3 Arsenic Removal Efficiency in Plants 188</p> <p>10.4 Toxicity of Arsenic on Plants Metabolism 189</p> <p>10.5 Metabolome Regulation and Plants Tolerance 190</p> <p>10.6 Concluding Remarks 191</p> <p>Acknowledgments 192</p> <p>References 192</p> <p><b>11 Role of Phytohormones in Regulating Arsenic-Induced Toxicity in Plants 198<br /> </b><i>Ummey Aymen, Marya Khan, Rachana Singh, Parul Parihar, and Neha Pandey</i></p> <p>11.1 Arsenic and Its Source 198</p> <p>11.2 Uptake and Transport of Arsenic Within Plants 200</p> <p>11.3 Mechanism of Arsenic Efflux by Plant Roots 202</p> <p>11.4 Impact of Arsenic on Metabolism and its Toxicity in Plants 203</p> <p>11.5 Phytohormones, Their Role and Interaction with Heavy Metals 205</p> <p>11.6 Mechanism of Detoxification of Heavy Metals with Special Emphasis on Arsenic by Phytohormones 207</p> <p>11.7 Exogenous Application of Phytohormones over Detoxification 209</p> <p>11.8 Conclusion 210</p> <p>References 210</p> <p><b>12 Influence of Some Chemicals in Mitigating Arsenic-Induced Toxicity in Plants 223<br /> </b><i>Palin Sil and Asok K. Biswas</i></p> <p>12.1 Introduction 223</p> <p>12.2 Role of Phosphorus 227</p> <p>12.3 Role of Nitric Oxide 229</p> <p>12.4 Role of Hydrogen Sulfide 230</p> <p>12.5 Role of Calcium 230</p> <p>12.6 Role of Proline 231</p> <p>12.7 Role of Phytohormones 232</p> <p>12.8 Role of Selenium 235</p> <p>12.9 Role of Silicon 236</p> <p>12.10 Conclusion 238</p> <p>Author Contributions 240</p> <p>Acknowledgments 240</p> <p>References 240</p> <p><b>13 Strategies to Reduce the Arsenic Contamination in the Soil–Plant System 249<br /> </b><i>Mohammad Mehdizadeh, Waseem Mushtaq, Shahida Anusha Siddiqui, Samina Aslam, Duraid K.A. AL-Taey, Koko Tampubolon, Emad Jafarzadeh, and Anahita Omidi</i></p> <p>13.1 Introduction 249</p> <p>13.2 Arsenic 250</p> <p>13.3 Arsenic Use in Agricultural Soils 252</p> <p>13.4 Arsenic Fate in Soil 252</p> <p>13.5 Toxicity of Arsenic on Humans, Animals and Plants 253</p> <p>13.6 Strategies to Reduce the Arsenic Contamination in the Soil–Plant System 254</p> <p>13.6.1 Agricultural Management for Detoxification and Mitigation of Arsenic 254</p> <p>13.6.2 Biotechnological Method 255</p> <p>13.6.3 Bioremediation 256</p> <p>13.6.3.1 Phytoremediation 256</p> <p>13.6.3.2 Microbial and Fungal Remediation 256</p> <p>13.6.3.3 Addition of Fertilizers to Soils 257</p> <p>13.6.3.4 Other Methods 257</p> <p>13.7 Conclusions 257</p> <p>References 259</p> <p><b>14 Arsenic Removal by Phytoremediation Techniques 267<br /> </b><i>Zahra Souri, Hamidreza Sharifan, Letúzia Maria de Oliveira, and Lucy Ngatia</i></p> <p>14.1 Arsenic Presence in the Environment 267</p> <p>14.2 Arsenic Contamination and its Effects on Human Health 269</p> <p>14.3 Arsenic Toxicity in Plants 270</p> <p>14.4 Arsenic Attenuation by Phytoremediation Technology 273</p> <p>14.5 Phytoextraction 274</p> <p>14.6 Arsenic Hyperaccumulation by Plants 274</p> <p>14.7 Phytostabilization 275</p> <p>14.8 Phytovolatilization 275</p> <p>14.9 Rhizofiltration 276</p> <p>14.10 Novel Approaches of Phytoremediation Technology 276</p> <p>14.10.1 Using Nanotechnology 276</p> <p>14.10.2 Nanoparticles in Soil 276</p> <p>14.10.3 Foliar Application of Nanoparticles 277</p> <p>14.10.4 Intercrops and Rotation Cultivation 279</p> <p>14.10.5 Irrigation Regime Management 279</p> <p>14.10.6 Soil Oxyanions Management 279</p> <p>References 280</p> <p><b>15 Arsenic Removal by Electrocoagulation 287<br /> </b><i>Aysegul Yagmur Goren and Mehmet Kobya</i></p> <p>15.1 Introduction 287</p> <p>15.2 Arsenic Contamination in Natural Waters 287</p> <p>15.3 Advantages and Disadvantages of Main Arsenic Removal Technologies 290</p> <p>15.4 As Removal Mechanism with EC 293</p> <p>15.5 Operating Parameters Affecting Arsenic Removal Through EC 295</p> <p>15.6 Electrode Shape and Material 295</p> <p>15.7 Solution pH 301</p> <p>15.8 Effect of Applied Current 302</p> <p>15.9 Optimization of EC Arsenic Removal Process 304</p> <p>15.10 Cost of EC Arsenic Removal Method 305</p> <p>15.11 Merits and Demerits 306</p> <p>15.12 Conclusions 307</p> <p>References 308</p> <p><b>16 Developments in Membrane Technologies and Ion-Exchange Methods for Arsenic Removal from Aquatic Ecosystems 315<br /> </b><i>Muhammad Bilal Shakoor, Israr Masood ul Hasan, Sajid Rashid Ahmad, Mujahid Farid, Muzaffar Majid, Irshad Bibi, Asim Jilani, Tanzeela Kokab, and Nabeel Khan Niazi</i></p> <p>16.1 Introduction 315</p> <p>16.2 Arsenic Chemistry, Sources, and Distribution in Water 316</p> <p>16.3 Health Implications of Arsenic 318</p> <p>16.4 Membrane Technologies 319</p> <p>16.4.1 High-Pressure Membranes 319</p> <p>16.4.1.1 Reverse Osmosis 319</p> <p>16.4.1.2 Nanofiltration 320</p> <p>16.4.2 Low-Pressure Membrane 320</p> <p>16.4.2.1 Microfiltration 320</p> <p>16.4.2.2 Ultrafiltration 321</p> <p>16.5 Ion Exchange 322</p> <p>16.5.1 Ion-Exchange Resins 323</p> <p>16.5.2 Polymeric Ligand Exchangers 323</p> <p>16.5.3 Fe-Loaded Resins 324</p> <p>16.5.4 Cu(II)-Loaded Resins 325</p> <p>16.6 Conclusion 325</p> <p>Acknowledgments 326</p> <p>References 326</p> <p><b>17 Arsenic Removal by Membrane Technologies and Ion Exchange Methods from Wastewater 330<br /> </b><i>Simranjeet Singh, Harry Kaur, Daljeet Singh Dhanjal, Praveen C. Ramamurthy, and Joginder Singh</i></p> <p>17.1 Introduction 330</p> <p>17.2 Arsenic Removal Using Membrane Separation 331</p> <p>17.2.1 Microfiltration 332</p> <p>17.2.2 Nanofiltration 333</p> <p>17.2.3 Reverse Osmosis 333</p> <p>17.2.4 Ultrafiltration 334</p> <p>17.3 Arsenic Removal Using Ion Exchange Methods 334</p> <p>17.3.1 Ion Exchange Resin 334</p> <p>17.3.2 Ion Exchange Fiber 335</p> <p>17.4 Methods to Increase the Efficiency of Arsenic Removal 336</p> <p>17.4.1 Oxidation 336</p> <p>17.4.2 Adsorption 337</p> <p>17.4.3 Coagulation and Flocculation 337</p> <p>17.4.4 Phytoremediation 338</p> <p>17.5 Conclusion 338</p> <p>Acknowledgments 339</p> <p>References 339</p> <p><b>18 Methods to Detect Arsenic Compounds 345<br /> </b><i>Shraddha Mishra and Sanjay Kumar Verma</i></p> <p>18.1 Introduction 345</p> <p>18.2 Colorimetric Method 347</p> <p>18.3 Electrochemical Method 347</p> <p>18.4 Method Based on FRET 348</p> <p>18.5 Method Based on SPR 349</p> <p>18.6 Method Based on Spectrometry 349</p> <p>18.6.1 Atomic Absorption Spectrometry 350</p> <p>18.6.1.1 Hydride Generation Atomic Absorption Spectrometry 351</p> <p>18.6.1.2 Electrothermal/Graphite Furnace Atomic Absorption Spectrometry 351</p> <p>18.6.2 Atomic Fluorescence Spectrometry 352</p> <p>18.6.3 Inductively Coupled Plasma Techniques 352</p> <p>18.6.3.1 Inductively Coupled Plasma Mass Spectrometry 353</p> <p>18.6.3.2 Inductively Coupled Plasma/Optical Emission Spectrometry 353</p> <p>18.7 Biosensor for Arsenic Detection 353</p> <p>18.7.1 Whole Cell-Based Biosensor 354</p> <p>18.7.1.1 Green Fluorescent Protein-Based Biosensor 355</p> <p>18.7.1.2 Bioluminescence/Luciferase-Based Biosensor 356</p> <p>18.7.1.3 β-galactosidase/lacZ-based biosensor 356</p> <p>18.7.1.4 Whole-Cell Biosensor Based on Other Approaches 357</p> <p>18.7.2 Cell-Free/Biomolecules-Based Biosensor 358</p> <p>18.7.2.1 DNA-Based Biosensor 358</p> <p>18.7.2.2 Aptamer-Based Biosensors 359</p> <p>18.7.2.3 Protein-Based Biosensors 361</p> <p>18.8 Conclusion 362</p> <p>References 362</p> <p><b>19 An Overview on Emerging and Innovative Technologies for Regulating Arsenic Toxicity in Plants 367<br /> </b><i>Arun Kumar, Pradeep Kumar Yadav, and Anita Singh</i></p> <p>19.1 Introduction 367</p> <p>19.2 Uptake of Arsenic 368</p> <p>19.3 Arsenic Toxicity on Plants 370</p> <p>19.4 Remediation Strategies of Arsenic Toxicity in Plants 373</p> <p>19.4.1 With the Application of Signaling Molecules and Phytohormones 373</p> <p>19.4.2 With the Application of Nano Particles 377</p> <p>19.4.3 With the Application of Genetic Manipulations 379</p> <p>19.5 Conclusion 381</p> <p>Acknowledgments 381</p> <p>References 384</p> <p><b>20 A Potential Phytoremedial Strategy for Arsenic from Contaminated Drinking Water Using Hygrophilla spinosa (Starthorn Leaves) 395</b><br /> <i>Nilanjana Roy Chowdhury, Debapriya Sinha, Antara Das, Madhurima Joardar, Anuja Joseph, Iravati Ray, Deepanjan Mridha, Ayan De, and Tarit Roychowdhury</i></p> <p>20.1 Introduction 395</p> <p>20.2 Methodology 397</p> <p>20.2.1 Adsorbent 397</p> <p>20.2.2 Sample Collection and Preparation of Adsorbent 397</p> <p>20.2.2.1 Sampling Site 397</p> <p>20.2.2.2 Preparation of Material 397</p> <p>20.2.3 Adsorbate 399</p> <p>20.2.4 The Batch Adsorption Study 399</p> <p>20.2.5 Estimation of As 399</p> <p>20.2.6 Estimation of Fe 399</p> <p>20.2.7 Calculation 400</p> <p>20.2.8 Quality Control and Quality Assurance 400</p> <p>20.2.9 Statistical Evaluation 400</p> <p>20.3 Results and Discussion 400</p> <p>20.3.1 Effect of Adsorbent Dosage 400</p> <p>20.3.2 Effect of Contact Time 402</p> <p>20.3.3 Effect of pH 403</p> <p>20.3.4 Effect of RPM 405</p> <p>20.4 Conclusion 407</p> <p>References 408</p> <p>Index 411</p>
<p><b>Prabhat Kumar Srivastava</b> is an Assistant Professor of Botany in KS Saket PG College, Ayodhya, India. <p><b>Rachana Singh</b> is a Research Fellow in Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, India. <p><b>Parul Parihar</b> is an Assistant Professor at the Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, India and at the Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India. <p><b>Sheo Mohan Prasad</b> is a Professor of Botany at the University of Allahabad, Prayagraj, India.
<p><b>Comprehensive resource detailing the chemistry, toxicity and impact of arsenic in plants, and solutions to the problem</b> <p><i>Arsenic in Plants: Uptake, Consequences and Remediation Techniques</i> provides comprehensive coverage of the subject, detailing arsenic in our environment, the usage of arsenicals in crop fields, phytotoxicity of arsenic and arsenic’s impact on the morphology, anatomy and quantitative and qualitative traits of different plant groups, including their physiology and biochemistry. The work emphasizes the occurrence of arsenic, its speciation and transportation in plants, and differences in mechanisms of tolerance in hyper-accumulator and non-accumulator plants. <p>Throughout the text, the highly qualified authors delve into every facet of the interaction of arsenic with plants, including the ionomics, genomics, transcriptomics and proteomics in relation to arsenic toxicity, impact of exogenous phytohormones and growth-regulating substances, management of arsenic contamination in the soil-plant continuum, phytoremediation of arsenic toxicity and physical removal of arsenic from water. General discussion has also been included on subjects such as the ways through which this metalloid affects plant and human systems. <p>Topics covered include: <ul><li>Introduction and historical background of arsenic and the mechanism of arsenic transport and metabolism in plants</li> <li>Arsenic-induced responses in plants, including impact on biochemical processes and different plant groups, from cyanobacteria to higher plants</li> <li>The role of phytohormones, mineral nutrients, metabolites and signaling molecules in regulating arsenic-induced toxicity in plants</li> <li>Genomic, proteomic, metabolomic, ionomic and transcriptional regulation during arsenic stress</li> <li>Strategies to reduce the arsenic contamination in soil-plant systems and arsenic removal by phytoremediation techniques</li></ul> <p>Researchers, academics, and students of plant physiology, biotechnology, and agriculture will find valuable information in <i>Arsenic in Plants</i> to understand this pressing subject in full, along with its implications and how we can adapt our strategies and behaviors to promote reduced contamination through practical applications.

Diese Produkte könnten Sie auch interessieren:

The Air Spora
The Air Spora
von: Maureen E. Lacey, Jonathan S. West
PDF ebook
223,63 €
Vegetables I
Vegetables I
von: Jaime Prohens-Tomás, Fernando Nuez
PDF ebook
287,83 €
Handbook of Poisonous and Injurious Plants
Handbook of Poisonous and Injurious Plants
von: Lewis S. Nelson, L.R. Goldfrank, Andrew Weil, Richard D. Shih, Michael J. Balick
PDF ebook
117,69 €