Details

Applications of Genome Engineering in Plants


Applications of Genome Engineering in Plants


1. Aufl.

von: Santosh Kumar Upadhyay

162,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 15.12.2023
ISBN/EAN: 9781394183890
Sprache: englisch
Anzahl Seiten: 448

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Applications of Genome Engineering in Plants</b> <p><b>Understand the keys to creating the food of the future</b> <p>Genome engineering in plants is a field that has made enormous strides in recent years. In particular, the CRISPR-Cas system has been used in a number of crop species to make significant leaps forward in nutritional improvement, stress tolerance, crop yield, and more. As scientists work to meet global food needs and foster sustainable agriculture in a changing world, genome engineering promises only to become more important. <p><i>Applications of Genome Engineering in Plants</i> details the history of, and recent developments in, this essential area of biotechnology. It describes advances enabling nutritional improvement, nutraceuticals improvement, flavonoid enrichment, and many more crop enhancements, as well as subjects such as biosafety and regulatory mechanisms. The result is a thorough and essential overview for researchers and biotech professionals. <p><i>Applications of Genome Engineering in Plants</i> readers will also find: <ul><li>Chapters on trans-gene free editing or non-transgenic approaches to plant genomes</li> <li>Detailed discussion of topics including nanotechnology-facilitated genome editing, engineering for virus resistance in plants, and more</li> <li>Applications of genome editing in oil seed crops, vegetables, ornamental plants, and many others</li></ul> <p><i>Applications of Genome Engineering in Plants</i> is ideal for academics, scientists, and industry professionals working in biotechnology, agriculture, food science, and related subjects.
<p>List of Contributors xv</p> <p>Preface xix</p> <p>About the Editor xx</p> <p><b>1 CRISPR/Cas-Mediated Genome Editing in Plants: A Historical Perspective 1<br /> </b><i>Anil Kumar, Shumayla, and Santosh Kumar Upadhyay</i></p> <p>1.1 Introduction 1</p> <p>1.2 Historical Background 2</p> <p>1.3 Mechanism of CRISPR/Cas System 4</p> <p>1.3.1 Acquisition of Spacers 4</p> <p>1.3.2 Biogenesis 5</p> <p>1.3.3 Interference with the Target 5</p> <p>1.4 Breakthrough Studies in CRISPR/Cas System 5</p> <p>1.5 CRISPR Types 6</p> <p>1.6 Type of Cas Proteins 7</p> <p>1.6.1 Cas 1 7</p> <p>1.6.2 Cas 2 7</p> <p>1.6.3 Cas 3 7</p> <p>1.6.4 Cas 4 7</p> <p>1.6.5 Cas 5 7</p> <p>1.6.6 Cas 6 8</p> <p>1.6.7 Cas 7 8</p> <p>1.6.8 Cas 8 8</p> <p>1.6.9 Cas 9 8</p> <p>1.6.10 Cas 10 8</p> <p>1.6.11 Cas 11 8</p> <p>1.6.12 Cas 12 9</p> <p>1.6.13 Cas 13 9</p> <p>1.6.14 Cas 14 9</p> <p>1.7 CRISPR/Cas Modification 9</p> <p>1.7.1 Nickase 9</p> <p>1.7.2 Dead Cas9 (dCas9) 10</p> <p>1.7.3 Base Editors 10</p> <p>1.7.4 Prime Editors 10</p> <p>1.8 CRISPR/Cas as a Genome Editing Tool and Its Application 10</p> <p>1.8.1 Gene Knockout 10</p> <p>1.8.2 DNA Insertion 11</p> <p>1.8.3 Base Editing 11</p> <p>1.8.4 Gene Activation and/or Repression 12</p> <p>1.8.5 Epigenetic Modifications 12</p> <p>1.8.6 Localization 12</p> <p>1.8.7 RNA Editing 13</p> <p>1.9 Conclusion 13</p> <p>References 13</p> <p><b>2 CRISPR/Cas-Mediated Multiplex Genome Editing in Plants and Applications 20<br /> </b><i>R. Prajapati and K. Tyagi</i></p> <p>2.1 Introduction 20</p> <p>2.2 Construct Design for Multiplex CRISPR/Cas Genome Editing 22</p> <p>2.3 Strategies for Processing Multiple-Guide RNAs 23</p> <p>2.4 Delivery of CRISPR/Cas Construct into Plant Cells 24</p> <p>2.4.1 Agrobacterium-Mediated Delivery 24</p> <p>2.4.2 Virus-Mediated Delivery 24</p> <p>2.4.3 Particle Bombardment-Based Delivery 25</p> <p>2.5 Broader Implications of CRISPR/Cas Multiplex Gene Editing 25</p> <p>2.5.1 Simultaneous Knockout of Multiple Genes 25</p> <p>2.5.2 Targeted Chromosomal Deletions 26</p> <p>2.5.3 Transcriptional Activation or Repression of Genes 26</p> <p>2.5.4 Base Editing 26</p> <p>2.6 Application of CRISPR/Cas Multiplex Gene Editing in Generating Disease Resistant Plants 27</p> <p>2.6.1 Disease Resistance Against Viruses 27</p> <p>2.6.2 Disease Resistance Against Fungi 28</p> <p>2.6.3 Disease Resistance Against Bacteria 29</p> <p>2.7 Application of CRISPR/Cas Multiplex Gene Editing in Abiotic Stress-Tolerant Crop Production 29</p> <p>2.7.1 Drought Tolerance 30</p> <p>2.7.2 Salinity Tolerance 30</p> <p>2.7.3 Herbicide Resistance 31</p> <p>2.8 Application of CRISPR/Cas Multiplex Gene Editing in Enhancing Crop Yield, Nutrition, and Related Traits 31</p> <p>2.9 Conclusion 32</p> <p>Acknowledgments 32</p> <p>References 34</p> <p><b>3 Cas Variants Increased the Dimension of the CRISPR Tool Kit 40<br /> </b><i>Sameer Dixit, Akanchha Shukla, Mahendra Pawar, and Jyothilakshmi Vadassery</i></p> <p>3.1 Introduction 40</p> <p>3.2 General Architecture and Mechanism of CRISPR-Cas System 41</p> <p>3.3 Classification of CRISPR-Cas System 42</p> <p>3.3.1 Class 1 CRISPR-Cas System 44</p> <p>3.3.2 Class 2 CRISPR-Cas System 45</p> <p>3.4 Different Application-Based CRISPR-Cas System 45</p> <p>3.4.1 Cas 9 46</p> <p>3.4.2 Cas 12 46</p> <p>3.4.3 Cas 14 46</p> <p>3.4.4 Cas 13 47</p> <p>3.4.5 Cas 3 47</p> <p>3.5 Advancement and Reengineering of CRISPR-Cas System 47</p> <p>3.6 Conclusions 48</p> <p>Acknowledgments 49</p> <p>References 49</p> <p><b>4 Advancement in Delivery Systems and Vector Selection for CRISPR/ Cas-Mediated Genome Editing in Plants 52<br /> </b><i>Sanskriti Vats, Sukhmandeep Kaur, Amit Chauhan, Dipul Kumar Biswas, and Rupesh Deshmukh</i></p> <p>4.1 Introduction 52</p> <p>4.2 Advancement in Delivery Systems and Vector Selection for CRISPR/ Cas-Mediated Genome Editing in Plants 53</p> <p>4.2.1 Vector Selection Based on Application and Availability in Plants 53</p> <p>4.2.2 Plant Transformation Methodologies 56</p> <p>4.3 Emerging Advanced CRISPR/Cas Systems and the Increased Demand for Quick Transformation Protocols 57</p> <p>4.4 Advancements in Agrobacterium-Meditated Stable Transformation of Plants 59</p> <p>4.5 Improvement of Agrobacterium-Mediated Transformation System by Developmental Regulators and Modular Agrobacterium Strains 61</p> <p>4.6 Non-Agrobacterium Systems for Plant Transformation 62</p> <p>4.7 Viral Vectors for Delivery of CRISPR Reagents and Increasing Donor Titer 63</p> <p>4.8 De novo Meristem Induction 65</p> <p>4.9 Biolistics and Protoplast Systems for CRISPR-Based Genome Editing 66</p> <p>4.9.1 Biolistic Approach 66</p> <p>4.9.2 Protoplast Approach 67</p> <p>4.10 Generation of Transgene-Free CRISPR-Edited Lines 68</p> <p>4.10.1 Mendelian Segregation Analysis 68</p> <p>4.10.2 Programmed Self-Elimination Method 68</p> <p>4.10.3 Transient Expression of CRISPR/Cas9 Cassette 68</p> <p>References 69</p> <p><b>5 Role of Nanotechnology in the Advancement in Genome Editing in Plants 78<br /> </b><i>Mehtap AYDIN</i></p> <p>5.1 An Overview of Plant Genome Editing 78</p> <p>5.1.1 Meganuclease 79</p> <p>5.1.2 Zinc Finger Nucleases 79</p> <p>5.1.3 Transcription Activator-Like Effectors Nucleases 80</p> <p>5.1.4 CRISPR/Cas9 Based Genome Editing 80</p> <p>5.2 Nanoparticles used as Genome Editing Tools in Plants 80</p> <p>5.2.1 Mesoporous Silica Nanoparticles 82</p> <p>5.2.2 Carbon Nanotubes Carbon 82</p> <p>5.2.3 Lipid-Based Nanoparticles 83</p> <p>5.2.4 Polymer-Based Nanoparticles 83</p> <p>5.3 Point of View: The Nanotechnology and Plant Genome Editing 83</p> <p>5.4 The Approach to Transferring Biomolecules to Plants and Its Limitations 84</p> <p>5.5 Role of Nanotechnology in Agriculture 84</p> <p>5.6 Conclusion 86</p> <p>References 86</p> <p><b>6 Genome Editing for Crop Biofortification 91<br /> </b><i>Erum Shoeb, Srividhya Venkataraman, Uzma Badar, and Kathleen Hefferon</i></p> <p>6.1 Introduction 91</p> <p>6.2 Current Global Status of Micronutrient Malnutrition 92</p> <p>6.3 Importance of Biofortification in Ensuring Food Security 92</p> <p>6.4 Strategies for Biofortification 93</p> <p>6.4.1 Chloroplast Metabolic Engineering for Developing Nutrient-Dense Food Crops 94</p> <p>6.5 Biofortification Through Agronomic Practices 96</p> <p>6.6 Genome Editing Is a Powerful Tool 98</p> <p>6.6.1 Meganucleases (MegNs) 99</p> <p>6.6.2 Zinc Finger Nucleases 100</p> <p>6.6.3 TALENs 100</p> <p>6.6.4 CRISPR/Cas- 9 101</p> <p>6.7 Examples of Biofortification Using Genome Editing Technologies 102</p> <p>6.7.1 Amino Acid Biofortification 102</p> <p>6.7.2 GABA Biofortification 102</p> <p>6.7.3 Improvement of Oil Content and Quality 105</p> <p>6.7.4 Improvement of Resistant Starch Content 105</p> <p>6.7.5 Improvement of Micronutrient Bioavailability 105</p> <p>6.7.6 Crops Enriched in Iron 105</p> <p>6.7.7 Zn-enriched Crops 106</p> <p>6.7.8 Crops Enriched in Vitamin A 106</p> <p>6.7.9 Crops Enriched in Vitamin E 107</p> <p>6.7.10 Engineering Crops Adapted to Growing in Toxic Environments 107</p> <p>6.7.11 CRISPR-Cas9-enabled Decrease in Anti-nutrients 107</p> <p>6.7.12 Benefits of Genome Editing over Other Technologies for Biofortification 108</p> <p>6.8 Regulation of Genome Editing 108</p> <p>6.9 Conclusions and Future Prospects 109</p> <p>References 109</p> <p><b>7 Genome Editing for Nutritional Improvement of Crops 122<br /> </b><i>Pooja Kanwar Shekhawat, Hasthi Ram, and Praveen Soni</i></p> <p>Abbreviations 122</p> <p>7.1 Introduction 124</p> <p>7.2 Evolution of Techniques for Improvement of Crops’ Genomes 124</p> <p>7.3 Genome Editing for Nutritional Improvement 125</p> <p>7.3.1 Improvement in Cereal Crops 126</p> <p>7.3.2 Improvement in Oilseed Crops 138</p> <p>7.3.3 Improvements in Horticulture Crops 139</p> <p>7.4 Regulation of Genome Edited Crops: Current Status 141</p> <p>7.5 Future Perspectives and Conclusion 142</p> <p>Author Contribution 142</p> <p>Acknowledgment 142</p> <p>References 143</p> <p><b>8 Genome-Editing Tools for Engineering of MicroRNAs and Their Encoded</b></p> <p><b>Peptides, miPEPs, in Plants 153<br /> </b><i>Ravi Shankar Kumar, Hiteshwari Sinha, Tapasya Datta, Ashish Sharma, and Prabodh Kumar Trivedi</i></p> <p>8.1 Introduction 153</p> <p>8.1.1 ZINC Finger Nucleases 154</p> <p>8.1.2 TALE Nucleases 155</p> <p>8.1.3 CRISPR/Cas 9 156</p> <p>8.2 CRISPR–Cas9-Mediated DNA Interference in Bacterial Adaptive Immunity 157</p> <p>8.2.1 Types of CRISPR Systems 158</p> <p>8.2.2 The Cas9 Enzyme 158</p> <p>8.3 CRISPR/Cas9 Effector Complex Assembly 159</p> <p>8.4 The Mechanism of CRISPR/Cas9-Mediated Genome Engineering 159</p> <p>8.4.1 Comparison with Other Technologies for Genome Editing 160</p> <p>8.4.2 Limitations of the Cas9 System 160</p> <p>8.4.3 miRNAs 162</p> <p>8.4.4 Biogenesis of miRNA 162</p> <p>8.4.5 miRNA and Gene Regulations 163</p> <p>8.5 Role of Genome-Editing in miRNA Expression 164</p> <p>8.6 Applications of the CRISPR/Cas9 System in miRNA Editing 165</p> <p>8.6.1 microRNA-Encoded Peptide 166</p> <p>8.6.2 Biogenesis of miPEPs 166</p> <p>8.6.3 Role of miPEP 167</p> <p>8.7 miPEPs Act as the Master Regulator in Plant Growth and Development 167</p> <p>8.8 Conclusions and Future Prospect 168</p> <p>Acknowledgments 169</p> <p>References 169</p> <p><b>9 Genome Editing for Trait Improvement in Ornamental Plants 177<br /> </b><i>Yang Zhou, Yuxin Li, and Wen Liu</i></p> <p>9.1 Introduction 177</p> <p>9.2 Application of Gene Editing Technology in Color Regulation of Ornamental Plants 178</p> <p>9.3 Application of Gene Editing Technology in Ornamental Plants Preservation 179</p> <p>9.4 Application of Gene Editing Technology in Shape and Organ Regulation of Ornamental Plants 180</p> <p>9.5 Application of Gene Editing Technology in Other Traits of Ornamental Plants 180</p> <p>9.6 Conclusions and Perspectives 181</p> <p>Acknowledgments 181</p> <p>References 181</p> <p><b>10 Abiotic Stress Tolerance in Plants by Genome Editing Applications 185<br /> </b><i>Elif Karlik Urhan</i></p> <p>10.1 Introduction 185</p> <p>10.2 Drought Tolerance 187</p> <p>10.3 Salinity Tolerance 191</p> <p>10.4 Temperature Stress Tolerance 196</p> <p>10.4.1 Heat Stress Tolerance 196</p> <p>10.4.2 Cold Stress Tolerance 199</p> <p>10.5 Conclusions 202</p> <p>References 203</p> <p><b>11 Genome Editing for Improvement of Nutrition and Quality in Vegetable Crops 222<br /> </b><i>Payal Gupta, Suhas G. Karkute, Prasanta K. Dash, and Achuit K. Singh</i></p> <p>11.1 Vegetables and Human Nutrition 222</p> <p>11.2 Important Quality Parameters of Vegetables 223</p> <p>11.3 Approaches for Improving Nutrition Content in Vegetables 223</p> <p>11.3.1 Breeding for Improving Nutrition in Vegetable Crops 224</p> <p>11.3.2 Genome Editing Technologies 225</p> <p>11.3.2.1 CRISPR/Cas9 and Advances in Genome Editing 225</p> <p>11.3.2.2 Mechanism of CRISPR/Cas-Mediated Genome Editing in Plants 226</p> <p>11.4 Applications of Genome Editing for Improvement of Vegetable Nutrition and Quality 227</p> <p>11.4.1 Improvement in the Appearance in Terms of Shape and Size 229</p> <p>11.4.2 Improvement of the Shelf-Life 229</p> <p>11.4.3 Improvement of the Ripening Time 230</p> <p>11.4.4 Improvement in Colour of the Fruit/Vegetable 230</p> <p>11.4.5 Biofortification of Vegetable Crops Through Genome Editing 231</p> <p>11.4.5.1 Metabolic Engineering of Carotenoid Biosynthesis Pathway 231</p> <p>11.4.5.2 Increasing γ-Amino Butyric Acid and Vitamin D Content 232</p> <p>11.4.6 Improvement of Starch Content 232</p> <p>11.4.7 Elimination of Anti-Nutritional Factors 232</p> <p>11.5 Challenges and Future Prospects 233</p> <p>11.6 Conclusion 234</p> <p>References 234</p> <p><b>12 Insight into the Flavonoids Enrichment in Plants by Genome Engineering 242<br /> </b><i>Elena V. Mikhaylova</i></p> <p>12.1 The Importance of Flavonoids 242</p> <p>12.2 Flavonoid Biosynthesis Pathway 244</p> <p>12.3 In Planta Flavonoid Enrichment via Genome Editing 247</p> <p>12.4 Biotechnological Production of Flavonoids 252</p> <p>12.5 Conclusions 253</p> <p>References 253</p> <p><b>13 Genome Engineering in Medicinal Plants for Improved Therapeutics: Current Scenario and Future Perspective 260<br /> </b><i>Buket Çakmak Güner</i></p> <p>13.1 Introduction 260</p> <p>13.2 Genome Engineering in Plants 261</p> <p>13.2.1 Agrobacterium-Mediated Transformation 261</p> <p>13.2.2 Biolistic or Particle Bombardment-Mediated Transformation 262</p> <p>13.2.3 Electroporation-Mediated Transformation 262</p> <p>13.2.4 Chemical-Mediated Transformation 262</p> <p>13.3 Genome Editing in Plants 263</p> <p>13.3.1 Applications in Medicinal Plants 264</p> <p>13.4 Medicinal Plants: Comparison of Traditional and Scientific Use 266</p> <p>13.5 Chemical Components of Medicinal Plants 266</p> <p>13.6 Using Biotechnological Techniques in Medicinal Plant Production 267</p> <p>13.7 In Vitro Culture Techniques in Herbal Medicine 268</p> <p>13.7.1 Plant Tissue Culture in Herbal Medicine 268</p> <p>13.7.2 Hairy Root Cultures in Herbal Medicine 269</p> <p>13.7.3 Callus and Cell Suspension Culture in Herbal Medicine 270</p> <p>13.7.4 Micropropagation in Herbal Medicine 270</p> <p>13.7.5 Elicitation 270</p> <p>13.7.6 Bioreactors for Large Scale Up 270</p> <p>13.8 Pharmaceutical Products from Medicinal Plants: Current Situation 271</p> <p>13.8.1 Antimicrobial Molecules 271</p> <p>13.8.2 Antioxidant Molecules 271</p> <p>13.8.3 Anticancer Molecules 273</p> <p>13.8.4 Cardiovascular Molecules 273</p> <p>13.9 Future Perspective and Conclusion 274</p> <p>References 275</p> <p><b>14 Nutraceuticals Enrichment by Genome Editing in Plants 282<br /> </b><i>Luis Alfonso Jiménez-Ortega, Jesus Christian Grimaldi-Olivas, Brandon Estefano Morales-Merida, and J. Basilio Heredia</i></p> <p>14.1 Introduction 282</p> <p>14.2 Functional and Biofortified Foods: Phytochemicals, Nutraceuticals, and Micronutrients 283</p> <p>14.3 Metabolic Engineering to Enhance the Production of Phenolic Compounds 283</p> <p>14.3.1 Biosynthetic Pathway of Phenolic Compounds 283</p> <p>14.3.1.1 Phenolic Acids 283</p> <p>14.3.1.2 Flavonoids 284</p> <p>14.3.2 Tools to Increase the Production of Phenolic Compounds in Plants and Crops 285</p> <p>14.4 Metabolic Engineering to Enhance the Production of Terpenes 286</p> <p>14.4.1 Biosynthetic Pathway of Terpenes 287</p> <p>14.4.2 Tools to Increase the Production of Terpenes in Plants and Crops 287</p> <p>14.5 Metabolic Engineering to Enhance the Production of Alkaloids 289</p> <p>14.5.1 Biosynthetic Pathway of Alkaloids 289</p> <p>14.5.2 Tools to Increase the Production of Alkaloids in Plants and Crops 291</p> <p>14.6 Metabolic Engineering to Enhance the Production of Vitamins and Minerals 292</p> <p>14.6.1 Tools to Increase the Production of Vitamins in Plants and Crops 292</p> <p>14.6.2 Tools to Increase the Production of Minerals in Plants and Crops 295</p> <p>14.7 Metabolic Engineering to Enhance the Production of Polyunsaturated Fatty Acids 296</p> <p>14.7.1 Biosynthetic Pathway of Polyunsaturated Fatty Acids 296</p> <p>14.7.2 Tools to Increase the Production of Polyunsaturated Fatty Acids in Plants and Crops 297</p> <p>14.8 Metabolic Engineering to Enhance the Production of Bioactive Peptides 298</p> <p>14.8.1 Tools to Increase the Production of Bioactive Peptides in Plants and Crops 298</p> <p>14.9 Conclusions 299</p> <p>References 299</p> <p><b>15 Exploration of Genome Editing Tools for microRNA Engineering in Plants 310<br /> </b><i>Hengyi Xu</i></p> <p>15.1 Introduction 310</p> <p>15.2 The Biogenesis of the miRNA and RNA Silencing in Plant 311</p> <p>15.3 MIRs as a Family in Plant 313</p> <p>15.4 The miRNA Engineering Methods in Plant 315</p> <p>15.5 The PAM of CRISPR/Cas and Strategy in Construct Design for miRNA Knock-Out 316</p> <p>15.6 Evolving CRISPR/Cas Tools, Strategies, and Their Potential Uses in MIR Regulation 317</p> <p>15.7 Conclusion and Future Perspectives 319</p> <p>References 320</p> <p><b>16 Application of Genome Editing in Pulses 326<br /> </b><i>Nikhil Malhotra</i></p> <p>16.1 Introduction 326</p> <p>16.2 Genome Editing for Crop Improvement in Pulses 327</p> <p>16.2.1 Chickpea (Cicer arietinum) 327</p> <p>16.2.2 Cowpea (Vigna unguiculata) 328</p> <p>16.2.3 Soybean (Glycine max) 328</p> <p>16.2.4 Non-Edited Grain Legumes 329</p> <p>16.2.4.1 Common Bean (Phaseolus vulgaris) 329</p> <p>16.2.4.2 Dry Pea (Pisum sativum) 330</p> <p>16.2.4.3 Faba Bean (Vicia faba) 330</p> <p>16.2.4.4 Mung Bean (Vigna radiata) 331</p> <p>16.2.4.5 Lentil (Lens culinaris) 332</p> <p>16.3 Conclusion and Future Prospects 332</p> <p>References 333</p> <p><b>17 Genome Editing for Microbial Pathogens Resistance in Crops 339<br /> </b><i>Mudasir Ahmad Bhat, Saima Jan, Sumreen Amin Shah, and Arif Tasleem Jan</i></p> <p>17.1 Introduction 339</p> <p>17.2 Effects of Climate Change on Crop Productivity 340</p> <p>17.3 CRISPR/Cas-Mediated Genome Editing in Plants 341</p> <p>17.3.1 CRISPR/cpf 1 342</p> <p>17.3.2 CRISPRi 342</p> <p>17.4 CRISPR-Based Engineering of Crop Plants 343</p> <p>17.4.1 Gene Disruption via Indel in Coding Sequences 343</p> <p>17.4.2 Gene Disruption via Indel in Promoter Regions 343</p> <p>17.4.3 Gene Deletion via Multiplex sgRNAs 344</p> <p>17.4.4 Gene Insertion via Homology-Directed Repair 344</p> <p>17.5 CRISPR/Cas in Imparting Tolerance to Biotic Factors 344</p> <p>17.5.1 CRISPR in Developing Resistance to Viruses 345</p> <p>17.5.2 CRISPR in Developing Resistance to Fungal Pathogens 345</p> <p>17.5.3 CRISPR in Developing Resistance to Different Bacteria 349</p> <p>17.6 CRISPR/Cas in Abiotic Stress Tolerance in Crops 350</p> <p>17.6.1 CRISPR/Cas in Temperature Stress Tolerance 350</p> <p>17.6.2 Drought Stress Responses 352</p> <p>17.6.3 Salinity Stress Responses 353</p> <p>17.6.4 Metal Stress Tolerance 354</p> <p>17.7 Conclusion 355</p> <p>Author Contributions 356</p> <p>Funding 356</p> <p>Acknowledgements 356</p> <p>Conflicts of Interest 356</p> <p>References 356</p> <p><b>18 Genome Editing for Raising Crops for Arid Lands: A Perspective of Increasing</b></p> <p><b>Stress Tolerance 369<br /> </b><i>Pooja Jangir, Purva Khandelwal, and Praveen Soni</i></p> <p>Abbreviations 369</p> <p>18.1 Introduction 370</p> <p>18.2 Genome Editing Toolbox 371</p> <p>18.3 Plants’ Responses to Drought and Heat 373</p> <p>18.4 Increasing Drought Tolerance in Plants Through Genome Editing 375</p> <p>18.4.1 Transcription Factors 375</p> <p>18.4.2 Phytohormone Signaling 381</p> <p>18.4.3 Morphology and Drought Avoidance 382</p> <p>18.4.4 MicroRNAs 382</p> <p>18.4.5 Nutrient and Yield Traits 383</p> <p>18.5 Increasing Heat Tolerance in Plants Through Genome Editing 383</p> <p>18.6 Conclusion and Future Perspective 385</p> <p>Author Contributions 386</p> <p>Conflicts of Interest 386</p> <p>Acknowledgment 386</p> <p>References 386</p> <p><b>19 Genome Engineering for the Development of Climate-Resilient Crop Plants 394<br /> </b><i>Bhavuk Gupta, Ayush Khandelwal, Brijesh Kumar, and Purva Bhalothia</i></p> <p>19.1 Introduction 394</p> <p>19.2 Effect of Climate Change on Crop Plants 395</p> <p>19.2.1 Effect on Photosynthesis and CO 2 Fixation 397</p> <p>19.2.2 Effect of Temperature 397</p> <p>19.2.3 Effect of Change in Precipitation 398</p> <p>19.2.4 Effect of Salinity 398</p> <p>19.3 Genome Engineering in Crop Improvement 398</p> <p>19.4 Traditional and Modern Molecular Breeding for Crop Improvement 400</p> <p>19.4.1 Classical Plant Breeding 400</p> <p>19.4.2 Genetic Engineering 401</p> <p>19.4.3 RNA Interference 401</p> <p>19.4.4 Phenomics and Genomics 401</p> <p>19.4.5 Role of miRNAs 402</p> <p>19.4.6 Zinc Finger Nucleases 402</p> <p>19.4.7 TALENs 403</p> <p>19.4.8 CRISPR/Cas 9 403</p> <p>19.5 Genome Engineering in Development of Climate Resilient Crops 404</p> <p>19.6 Status of Improved Crops with Genetic Engineering 405</p> <p>19.7 Problems Associated with Genetic Engineering 406</p> <p>19.8 Future Aspects 407</p> <p>19.9 Conclusion 407</p> <p>References 408</p> <p>Index 412</p>
<p><b>Santosh Kumar Upadhyay</b> is an Assistant Professor in the Department of Botany, Panjab University, Chandigarh, India. His research focuses on functional genomics in plants, especially the use of the CRISPR-Cas system for genetic engineering.
<p><b>Understand the keys to creating the food of the future</b> <p>Genome engineering in plants is a field that has made enormous strides in recent years. In particular, the CRISPR-Cas system has been used in a number of crop species to make significant leaps forward in nutritional improvement, stress tolerance, crop yield, and more. As scientists work to meet global food needs and foster sustainable agriculture in a changing world, genome engineering promises only to become more important. <p><i>Applications of Genome Engineering in Plants</i> details the history of, and recent developments in, this essential area of biotechnology. It describes advances enabling nutritional improvement, nutraceuticals improvement, flavonoid enrichment, and many more crop enhancements, as well as subjects such as biosafety and regulatory mechanisms. The result is a thorough and essential overview for researchers and biotech professionals. <p><i>Applications of Genome Engineering in Plants</i> readers will also find: <ul><li>Chapters on trans-gene free editing or non-transgenic approaches to plant genomes</li> <li>Detailed discussion of topics including nanotechnology-facilitated genome editing, engineering for virus resistance in plants, and more</li> <li>Applications of genome editing in oil seed crops, vegetables, ornamental plants, and many others</li></ul> <p><i>Applications of Genome Engineering in Plants</i> is ideal for academics, scientists, and industry professionals working in biotechnology, agriculture, food science, and related subjects.

Diese Produkte könnten Sie auch interessieren:

Biophotonics
Biophotonics
von: Xun Shen, Roel van Wijk
PDF ebook
149,79 €
Ordered Porous Nanostructures and Applications
Ordered Porous Nanostructures and Applications
von: Ralf B. Wehrspohn
PDF ebook
96,29 €
Biophotonics and Coherent Systems in Biology
Biophotonics and Coherent Systems in Biology
von: L.V. Beloussov, V.L. Voeikov, V.S. Martynyuk
PDF ebook
149,79 €